首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3287篇
  免费   159篇
  国内免费   291篇
  2023年   14篇
  2022年   40篇
  2021年   41篇
  2020年   32篇
  2019年   42篇
  2018年   48篇
  2017年   85篇
  2016年   98篇
  2015年   64篇
  2014年   95篇
  2013年   126篇
  2012年   74篇
  2011年   143篇
  2010年   106篇
  2009年   226篇
  2008年   249篇
  2007年   249篇
  2006年   225篇
  2005年   162篇
  2004年   164篇
  2003年   123篇
  2002年   80篇
  2001年   83篇
  2000年   78篇
  1999年   92篇
  1998年   82篇
  1997年   71篇
  1996年   75篇
  1995年   63篇
  1994年   58篇
  1993年   60篇
  1992年   56篇
  1991年   56篇
  1990年   55篇
  1989年   45篇
  1988年   38篇
  1987年   37篇
  1986年   33篇
  1985年   32篇
  1984年   36篇
  1983年   20篇
  1982年   40篇
  1981年   37篇
  1980年   34篇
  1979年   31篇
  1978年   10篇
  1977年   10篇
  1976年   5篇
  1974年   3篇
  1973年   5篇
排序方式: 共有3737条查询结果,搜索用时 15 毫秒
71.
F. J. Castillo 《Oecologia》1996,107(4):469-477
The antioxidative protection during the C3-CAM shift induced by water stress was investigated in the temperate succulent Sedum album L. The C3-CAM shift was characterized in terms of CO2 exchange, titratable acidity and phosphoenolpyruvate carboxylase activity. Well-watered plants displayed C3-like patterns of gas exchange and exhibited a mild day-night acid fluctuation indicating that those plants were performing CAM-cycling metabolism. Imposed drought highly stimulated CAM cycling, decreasing the net CO2 uptake during the day, eliminating net CO2 efflux at night and stimulating tissue acid fluctuations. As water deficit developed, chlorophyll fluorescence measurements showed a decrease in the Fv/Fm ratio, indicating that photoinhibition could follow after severe drought. Protection might be performed by the increased activity of enzymes involved in the destruction of free radicals and oxidants, but their response depended on the water status of the plant. Ascorbate peroxidase and superoxide dismutase activities increased in plants subjected to mild stress but declined during severe water stress. Catalase activity, however, was quite stable under mild water stress and was clearly inhibited under severe water stress. At this stage, glutathione reductase and monodehydroascorbate reductase seemed to be very important in the protection against oxidants, both increasing considerably their activities under severe water stress. Even if recycling has been shown to alleviate photoinhibition, our results clearly demonstrate that antioxidative enzymes play an important role in the protection of plants from oxidants during the C3-CAM shift induced by water stress.  相似文献   
72.
To characterize mechanisms of esophageal desalination, osmotic water permeability and ion fluxes were measured in the isolated esophagus of the seawater eel. The osmotic permeability coefficient in the seawater eel esophagus was 2·10-4 cm·s-1. This value was much lower than those in tight epithelial, although the eel esophagus is a leaky epithelium with a tissue resistance of 77 ohm·cm-2. When the esophagus was bathed in normal Ringer solutions on both sides no net ion and water fluxes were observed. However, when mucosal NaCl concentration was increased by a factor of 3, Na+ und Cl- ions were transferred from mucosa to serosa (desalination). If only Na+ or Cl- concentration in the mucosal fluid was increased by a factor of 3, net Na+ and Cl- fluxes were reduced to 30–40%, indicating that 60–70% of the net Na+ and Cl- fluxes are coupled mutually. The coupled NaCl transport seems to be effective in desalting the luminal high NaCl. The remaining 30–40% of the total Na+ and Cl- fluxes seems to be due to a simple diffusion, because these components are independent of each other and follow their electrochemical gradients, and also because these fluxes remain even after treatment with NaCN or ouabain. A half of the coupled NaCl transport could be explained by a Na+/H+–Cl-/HCO 3 - double exchanger on the apical membrane of the esophageal epithelium, because mucosal amiloride and 4.4-diisothiocyanatostilbene-2,2-disulphonic acid inhibited the net Na+ and Cl- fluxes by approximately 30%. The other half of the coupled NaCl transport, which follows their electrochemical gradients, still remains to be explained.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonic acid - NMDG N-methyl-d-glucosamine - P Cl Cl- permeability coefficient - PD transepithelial potential difference - P Na Na+ permeability coefficient - P osm osinotic permeability coefficient - TALH thick ascending limb of Henle's loop  相似文献   
73.
The dynamic properties of water in phosphatidylcholine lipid/water dispersions have been studied, applying a combination of 2H-NMR techniques (quadrupole splitting and spin-lattice relaxation time) and self-diffusion measurements using pulsed field gradient (PFG) 1H-NMR. The hydration properties of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) were compared with those of DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) and EYL (egg yolk phosphatidylcholine (lecithin)). A model is presented that assumes an exponentially decaying influence of the bilayer surface on water dynamics as well as on water orientation with increasing hydration. This assumption is based on an exponentially decaying hydration potential which results from direct lipid-water and water-water interactions. The model describes successfully the experimental data for a large water concentration range, especially at low hydration, where other models failed. With the exception of a small fraction of water which is significantly influenced by the surface in slowing down the mobility, the interbilayer water has isotropic, free water characteristics in terms of correlation times and molecular order. Hydration properties of POPC are comparable with those of EYL but differ from DOPC. At very low water content the correlation times of headgroup segmental reorientation and water are similar, indicating a strong coupling of this water to the lipid lattice. The hydration properties of the three lipids studied are explained in terms of slightly different headgroup conformations due to different lateral packing of the molecules by their fatty-acid chain composition.  相似文献   
74.
The stable isotopes 2H and 18O were used to determine the water sources of Eucalyptus camaldulensis at three sites with varying exposure to stream water, all underlain by moderately saline groundwater. Water uptake patterns were a function of the long-term availability of surface water. Trees with permanent access to a stream used some stream water at all times. However, water from soils or the water table commonly made up 50% of these trees' water. Trees beside an ephemeral stream had access to the stream 40–50% of the time (depending on the level of the stream). No more than 30% of the water they used was stream water when it was available. However, stream water use did not vary greatly whether the trees had access to the stream for 2 weeks or 10 months prior to sampling. Trees at the third site only had access to surface water during a flood. These trees did not change their uptake patterns during 2 months inundation compared with dry times, so were not utilising the low-salinity flood water. Pre-dawn leaf water potentials and leaf 13C measurements showed that the trees with permanent access to the stream experienced lower water stress and had lower water use efficiencies than trees at the least frequently flooded site. The trees beside the ephemeral stream appeared to change their water use efficiency in response to the availability of surface water; it was similar to the perennial-stream trees when stream water was available and higher at other times. Despite causing water stress, uptake of soil water and groundwater would be advantageous to E. camaldulensis in this semi-arid area, as it would provide the trees with a supply of nutrients and a reliable source of water. E. camaldulensis at the study site may not be as vulnerable to changes in stream flow and water quality as previously thought.  相似文献   
75.
Resprout and mature plant shoot growth, leaf water status and gas exchange behavior, tissue nutrient content, flowering, and production were studied for co-occurring shallow-rooted (Arbutus unedo L.) and deeprooted (Quercus ilex L.) Mediterranean tree species at the Collserola Natural Park in Northeast Spain Resprouts showed higher growth rates than mature plant shoots. During fall, no differences in eco-physiological performance of leaves were found, but mobilization of carbohydrates from burls strongly stimulated growth of fall resprouts compared to spring resprouts, despite low exposed leaf area of the fall shoots. During summer drought, resprouts exhibited improved water status and carbon fixation compared to mature plant shoots. Shoot growth of Q. ilex was apparently extended due to deep rooting so that initial slower growth during spring and early summer as compared to A. unedo was compensated. Tissue nutrient contents varied only slightly and are postulated to be of minor importance in controlling rate of shoot growth, perhaps due to the relatively fertile soil of the site. Fall flowering appeared to inhibit fall shoot growth in A. unedo, but did not occur in Q. ilex. The results demonstrate that comparative examinations utilizing vegetation elements with differing morphological and physiological adaptations can be used to analyze relatively complex phenomena related to resprouting behavior. The studies provide an important multi-dimensional background framework for further studies of resprouting in the European Mediterranean region.  相似文献   
76.
Pepper plants were grown under different water and nitrogen availabilities that produced severe nitrogen limitations and mild water stress. Nitrogen limitation produced lower leaf N content, higher C:N, and higher leaf content of phenolic compounds, in consonance with the carbon/nutrient balance hypothesis. Nitrogen limitation also produced lower nutritional quality of leaves, with lower relative growth rates and lower efficiency of conversion of ingested biomass on the polyphagous herbivoreHelicoverpa armigera. The biomass gained per gram nitrogen ingested also tended to be lower in those insects feeding on nitrogen-limited plants, in parallel with their higher phenolic content. However, larvae fed on nitrogen-limited plants did not increase the ingestion of food to compensate for the N deficiency of leaves. The mild water stress, which only slightly tended to increase the phenolic content of pepper leaves, had no significant effect on nutritional indices.  相似文献   
77.
Four complete amino acid sequences of hemoglobin β chains were determined for the swamp and the river types of the Asiatic water buffalo (Bubalus bubalis) and two species of the subgenus Anoa in Bubalus; B. (A.) depressicornis (H. Smith, 1827), the lowland anoa, and B. (A.) quarlesi (Ouwens, 1910), the mountain anoa. The two types of the bubalis were identical in the 145 amino acid residues of the β chains and, compared to this sequence, the two residues were substituted in the depressicornis (β49Thr → Ser and 134Ala → Thr) and the five were in the quarlesi (β53Val → Ile, 74Met → Ile, 111Val → Ile, 115Arg → His and 134Ala → Thr). While both Anoa species diverged from the bubalis by the β134Ala → Thr, they differed from each other by the five substitutions. The Anoa species are endemic to Sulawesi of Indonesia. Their speciation and the present coexistence were discussed with reference to probable immigrations of two ancestral Anoa species to Sulawesi at so long interval that had caused a reproductive isolation between the two wild animals. The earlier immigrants were postulated to be ancestral to the quarlesi and the later ones to the depressicornis.  相似文献   
78.
A. Basset 《Oecologia》1993,93(3):315-321
The role of interactions between chemical perturbations and biological constraints on detritivores occurring in polluted streams were investigated by analysing food absorption variation with stress. Absorption rate and efficiency of four Asellus aquaticus (L.) populations from differently polluted habitats were quantified with respect to the microbial guilds colonizing detritus. A twin tracer method was used. Detritus was microbially colonized in standard conditions and on each stream bottom to control for potential resource-independent variations among individuals. The relationship between length and weight was also determined on a random sample of individuals of each population. Differences of 14.6% in potential absorption efficiency and 11.3% in potential absorption rate were observed between populations from the least and the most polluted habitat. Actual (realized) variations were much stronger: from a minimum of a 60.1% reduction in absorption efficiency to a maximum of 93.8% for the rate. The realized food absorption and the individual weight per length showed the same pattern of variation among populations. This suggested that the availability of energy to isopods in nature was related to stream pollution and resource quality. Bottomup interactions appear to be the most relevant pathway through which chemical water pollution affects the Asellus populations studied. The potential resource-independent variations among individuals are also likely to be explained by temporal cascading of resource-mediated effects.  相似文献   
79.
Effects of fire on water and salinity relations of riparian woody taxa   总被引:12,自引:0,他引:12  
Water and salinity relations were evaluated in recovering burned individuals of the dominant woody taxa from low-elevation riparian plant communities of the southwestern U.S. Soil elemental analyses indicated that concentrations of most nutrients increased following fire, contributing to a potential nutrient abundance but also elevated alluvium salinity. Boron, to which naturalized Tamarix ramosissima is tolerant, was also elevated in soils following fire. Lower moisture in the upper 30 cm of burned site soil profiles was attributed to shifts in evapotranspiration following fire. Higher leaf stomatal conductance occurred in all taxa on burned sites. This is apparently due to higher photosynthetic photon flux density at the midcanopy level and may be partially mitigated by reduced unit growth in resprouting burned individuals. Predawn water potentials varied little among sites, as was expected for plants exhibiting largely phreatophytic water uptake. Midday water potentials in recovering Salix gooddingii growing in the Colorado River floodplain reached levels which are considered stressful. Decreased hydraulic efficiency was also indicated for this species by examining transpiration-water potential regressions. Recovering, burned Tamarix and Tessaria sericea had enriched leaf tissue 13C relative to unburned controls. Higher water use efficiency following fire in these taxa may be attributed to halophytic adaptations, and to elevated foliar nitrogen in Tessaria. Consequently, mechanisms are proposed which would facilitate increased community dominance of Tamarix and Tessaria in association with fire. The theory that whole ecosystem processes are altered by invading species may thus be extended to include those processes related to disturbance.  相似文献   
80.
CO2 exchange rate in relation to thallus water content (WC, % of dry weight) was determined for 22 species of lichens, mainly members of the genera Pseudocyphellaria and Sticta, from a temperate rainforest, Urewere National Park, New Zealand. All data were obtained in the field, either using a standard technique in which the lichens were initially wetted (soaked or sprayed, then shaken) and allowed to slowly dry, or from periodic measurements on samples that were continuously exposed in their natural habitat. A wide range of WC was found, with species varying from 357 to 3360% for maximal WC in the field, and from 86 to 1300% for optimal WC for photosynthesis. Maximal WC for lichens, wetted by the standard technique, were almost always much less than the field maxima, due to the presence of water on the thalli. The relationships between CO2 exchange rate and WC could be divided into four response types based on the presence, and degree, of depression of photosynthesis at high WC. Type A lichens showed no depression, and Type B only a little at maximal WC. Type C had a very large depression and, at the highest WC, CO2 release could occur even in the light. Photosynthetic depression commenced soon after optimal WC was reached. Type D lichens showed a similar depression but the response curve had an inflection so that net photosynthesis was low but almost constant, and never negative, at higher WC. There was little apparent relationship between lichen genus or photobiont type and the response type. It was shown that high WC does limit photosynthetic CO2 uptake under natural conditions. Lichens, taken directly from the field and allowed to dry under controlled conditions, had net photosynthesis rates that were initially strongly inhibited but rose to an optimum, before declining at low WC. The limiting effects of high WC were clearly shown when, under similar light conditions, severe photosynthetic depression followed a brief, midday, rain storm. Over the whole measuring period the lichens were rarely at their optimal WC for photosynthesis, being mostly too wet or, occasionally, too dry. Photosynthetic performance by the lichens exposed in the field was similar to that expected from the relationship between the photosynthetic rate and WC established by the standard procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号