首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3693篇
  免费   183篇
  国内免费   300篇
  2023年   18篇
  2022年   41篇
  2021年   44篇
  2020年   35篇
  2019年   50篇
  2018年   48篇
  2017年   96篇
  2016年   109篇
  2015年   70篇
  2014年   108篇
  2013年   133篇
  2012年   81篇
  2011年   152篇
  2010年   120篇
  2009年   239篇
  2008年   272篇
  2007年   268篇
  2006年   251篇
  2005年   175篇
  2004年   184篇
  2003年   141篇
  2002年   92篇
  2001年   90篇
  2000年   101篇
  1999年   105篇
  1998年   94篇
  1997年   81篇
  1996年   94篇
  1995年   79篇
  1994年   76篇
  1993年   67篇
  1992年   77篇
  1991年   69篇
  1990年   59篇
  1989年   52篇
  1988年   45篇
  1987年   38篇
  1986年   38篇
  1985年   33篇
  1984年   39篇
  1983年   21篇
  1982年   46篇
  1981年   38篇
  1980年   36篇
  1979年   31篇
  1978年   10篇
  1977年   10篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
排序方式: 共有4176条查询结果,搜索用时 15 毫秒
111.
112.
Water relations were analysed in a semi-deciduous forest grove occurring in the oxisols of the Orinoco savannas. This grove has a shallow unconsolidated ironstone cuirass, which is overlaid by a sandy loam layer (0.0–0.5 m) that contains more than 90% of the grove forest root phytomass. Evapotranspiration and through drainage were calculated by using data from the soil profile as related to physical characteristics of the site root zone, hydraulic conductivity, volumetric water content and potential hydraulic gradient. Mean annual evapotranspiration was 783 mm year–1 and annual through drainage below the root zone was 14% (162 mm year–1) of the gross rainfall. This drainage recharged the 42% of the annual saturation deficit of the water table. Similar mean annual evapotranspiration (770 mm year–1) was also calculated by using the water balance components. The mean daily coupling omega factor () between the grove canopy and the surrounding atmosphere indicated that a high degree of coupling (=0.14±0.16) occurs in the grove and evapotranspiration was mainly controlled by surface conductance. As the dry season proceeded, the soil saturation deficit () increased rapidly resulting in a threshold surface conductance (0.030–0.005 m s–1) for ranging from 0.05 to 0.10. Hypotheses to explain the omnipresence of perennial species in the wide range of physical conditions in neotropical savannas are discussed.  相似文献   
113.
The field metabolic rates (FMR) and rates of water flux were measured in two species of varanid lizards over five periods of the year in tropical Australia. The energetics of these species were further investigated by directly measuring activity (locomotion) and body temperatures of free-ranging animals by radiotelemetry, and by measuring standard metabolic rate (over a range of body temperatures) and activity metabolism in the laboratory. Seasonal differences in the activity and energetics were found in these goannas despite similar, high daytime temperatures throughout the year in tropical Australia. Periods of inactivity were associated with the dry times of the year, but the onset of this period of inactivity differed with respect to habitat even within the same species. Varanus gouldii, which inhabit woodlands only, were inactive during the dry and late dry seasons. V. panoptes that live in the woodland had a similar seasonal pattern of activity, but V. panoptes living near the floodplain of the South Alligator River had their highest levels of activity during the dry season when they walked long distances to forage at the receding edge of the floodplain. However, during the late dry season, after the floodplain had dried completely, they too became inactive. For V. gouldii, the rates of energy expenditure were 196 kJ kg–1 day–1 for active animals and 66 kJ kg–1 day–1 for inactive animals. The rates of water influx for these groups were respectively 50.7 and 19.5 ml kg–1 day–1. For V. panoptes, the rates of energy expenditure were 143 kJ kg–1 day–1 for active animals and 56 kJ kg–1 day–1 for inactive animals. The rates of water influx for these two groups were respectively 41.4 and 21.0 ml kg–1 day–1. We divided the daily energy expenditure into the proportion of energy that lizards used when in burrows, out of burrows but inactive, and in locomotion for the two species during the different seasons. The time spent in locomotion by V. panoptes during the dry season is extremely high for a reptile (mean of 3.5 h/day spent walking), and these results provide an ecological correlate to the high aerobic capacity found in laboratory measurements of some species of varanids.  相似文献   
114.
Partitioning of water resources among plants of a lowland tropical forest   总被引:3,自引:0,他引:3  
Source water used by plants of several species in a semi-evergreen lowland tropical forest on Barro Colorado Island, Panama, was assessed by comparing the relative abundance of deuterium, D, versus hydrogen, H (stable hydrogen isotope composition, D) in xylem sap and in soil water at different depths, during the dry season of 1992. Ecological correlates of source water were examined by comparing xylem water D values with leaf phenology, leaf water status determined with a pressure chamber, and rates of water use determined as mass flow of sap using the stem heat balance method. Soil water D values decreased sharply to 30 cm, then remained relatively constant with increasing depth. Average D values were-13, for 0–30 cm depth and-36.7 for 30–100 cm depth. Soil water D values were negatively associated with soil water content and soil water potential. Concurrent analyses of xylem water revealed a high degree of partitioning of water resources among species of this tropical forest. Xylem water D of deciduous trees (average=-25.3±1.4) was higher than that of evergreen trees (average=-36.3±3.5), indicating that evergreen species had access to the more abundant soil water at greater depth than deciduous species. In evergreen shade-tolerant and high-light requiring shrubs and small trees, D of xylem water was negatively correlated with transpiration rate and leaf water potential indicating that species using deeper, more abundant water resources had both higher rates of water use and more favorable leaf water status.  相似文献   
115.
Abstract Water flow-innduced transport of Burkholderia cepacia strain P2 and Pseudomonas fluorescens strain R2f cells through intact cores of loamy sand and silt loam field soils was measured for two percolation regimes, 0.9 and 4.4 mm h−1, applied daily during 1 hour. For each strain, transport was generally similar between the two water regimes. Translocation of B. cepacia , with 4.4 mm h−1, did occur initially in both soils. In the loamy sand soil, no change in the bacterial distribution occurred during the experiment (51 days). In the silt loam, B. cepacia cell numbers in the lower soil layers were significantly reduced, to levels at or below the limit of detection. Transport of P. fluorescens in both soils also occurred initially and was comparable to that of B. cepacia . Later in the experiment, P. fluorescens was not detectable in the lower soil layers of the loamy sand cores, due to a large decrease in surviving cell numbers. In the silt loam, the inoculant cell distribution did not change with time. Pre-incubation of the inoculated cores before starting percolation reduced B. cepacia inoculant transport in the loamy sand soil measured after 5 days, but not that determined after 54 days. Delayed percolation in the silt loam soil affected bacterial transport only after 54 days. The presence of growing wheat plants overall enhanced bacterial translocation as compared to that in unplanted soil cores, but only with percolating water. Percolation water from silt loam cores appeared the day after the onset of percolation and often contained inoculant bacteria. With loamy sand, percolation water appeared only 5 days after the start of percolation, and no inoculant bacteria were found. The results presented aid in predicting the fate of genetically manipulated bacteria in a field experiment.  相似文献   
116.
Optical methods to measure membrane transport processes   总被引:6,自引:0,他引:6  
  相似文献   
117.
Lumen to bath J 12/C 1 and bath to lumen J 21/ C 2 fluxes per unit concentration of 19 probes with diameters (d m) ranging from 3.0–30.0 Å (water, urea, erythritol, mannitol, sucrose, raffinose and 13 dextrans with d m 9.1–30.0 Å) were measured during volume secretion (J v ) in the upper segment of the Malpighian Tubule of Rhodnius by perfusing lumen and bath with 14C or 3H-labeled probes. J net=(J 12/C 1J 21/C 2) was studied as a function of J v · J v was varied by using different concentrations of 5-hydroxy tryptamine. J net for 3H-water was not different from J v We found: (i) A strong correlation between J net and J v for 8 probes d m =3.0–11.8 Å (group a probes), indicating that the convective component of J net is more important than its diffusive component and than unstirred layers effects which are negligible. Therefore group a probes are solvent dragged as they cross the epithelium, (ii) There is no correlation between J net and J v for 11 probes with d m=11.8–30 Å (group b). Therefore these probes must cross the epithelium by diffusion and not by solvent drag, (iii) In a plot of J net/J v vs. d m group a probes show a steep linear relation with a slope = –0.111, while for group b probes the slope is –0.002. Thus there is a break between groups a and b in this plot. We tried to fit the data with models for restricted diffusion and convention through cylindrical or parallel slit pathways. We conclude that (i) group a probes are dragged by water through an 11.0 Å-wide slit, (ii) Most of J v must follow an extracellular noncytosolic pathway, (iii) Group b probes must diffuse through a 42 Å-wide slit, (iv) A cylindrical pathway does not fit the data.E.G. is a Visiting Scientist at IVIC. It is a pleasure to thank Drs. A.E. Hill and Bruria Shachar-Hill for their suggestion of the use of dextrans, their instruction and help with the dextran separation technique, and their extensive discussions. Dr. R. Apitz, Mr H. Rojas and Mrs. Fulvia Bartoli were most helpful with suggestions during the course of the experimental work. Mr. Jose Mora was fundamental help with the equipment. Mrs. Lelis Ochoa and Mr. Luis F. Alvarez helped with some of the drawings. This work was partially supported by CONICIT, Fundación Polar and CDCH of UCV. It is a pleasure to thank Dr. H. Passow and Dr. K.J. Ullrich at the Max Planck Institut für Biophysik (Frankfurt/Main) where this work was initiated.  相似文献   
118.
We have previously reported that the isolated frog corneal epithelium (a Cl-secreting epithelium) has a large diffusional water permeability (Pdw 1.8×10–4 cm/s). We now report that the presence of Cl in the apical-side bathing solution increases the diffusional water flux, Jdw (in both directions) by 63% from 11.3 to 18.4 l min–1 · cm–2 with 60 mm [Cl] exerting the maximum effect. The presence of Cl in the basolateral-side bathing solution had no effect on the water flux. In Cl-free solutions amphotericin B increased Jdw by 29% but only by 3% in Cl-rich apical-side bathing solution, suggesting that in Cl-rich apical side bathing solution, the apical barrier is no longer rate limiting. Apical Br (75 mm) also increased Jdw by 68%. The effect of Cl on Jdw was observed within 1 min after its addition to the apicalside bathing solution. HgCl2 (0.5 mm) reduced the Cl-increased Pdw by 31%. The osmotic permeability (Pf) was also measured under an osmotic gradient yielding values of 0.34 and 2.88 (x 10–3 cm/s) in Cl-free and Cl-rich apical-side bathing solutions respectively. It seems that apical Cl, or Cl secretion into the apical bath could activate normally present but inactive water channels. In the absence of Cl, water permeability of the apical membrane seems to be limited to the permeability of the lipid bilayer.This work was supported by National Eye Institute grants EY-00160 and EY-01867.  相似文献   
119.
Aquaporin CHIP, a 28 kDa channel forming protein, has been proposed to function as water channel in both erythrocyte and kidney proximal tubule. Recently, we have reported that in frog urinary bladder, a model of the kidney collecting tubule, polyclonal antibodies against human erythrocyte CHIP recognize and immunoprecipitate a 30 kDa protein from the epithelial cell homogenate. In the present work confocal fluorescence microscopy was used to determine the cellular and subcellular localization of CHIP28-like proteins in the urinary epithelium. A clear labeling of the apical border was found after Triton X-100 permeabilization. The labeling was distributed throughout the apical domain and not restricted to specific domains of the membrane. The staining was also present in the deeper confocal sections where the fluorescence seems to be localized at the cellular contour. No difference in the labeling patterns was observed between resting and ADH-treated bladder. Specificity of the staining was confirmed by the absence of the labeling pattern when antiserum was preadsorbed on CHIP28 protein immobilized on Immobilon P stripes. Our results suggest that CHIP-like proteins are not proteins inserted in the apical membrane during the antidiuretic response. Moreover, we do not know whether the labeling was due to the presence of CHIP28 itself or an as-yet-unidentified protein sharing immunological analogies with aquaporin CHIP.  相似文献   
120.
Gramicidin A pores are permeable to water and small monovalent cations. For K, Rb, and Cs there is good evidence from conductances and permeability ratios that a second ion can enter a pore already occupied by another, but for Na this evidence is inconclusive and comparison of tracer fluxes and single channel conductances suggests that second ion entries are prohibited. Partly as a result of the complications of second ion entry there have been widely differing estimates for the dissociation constants for the first ion in the channel. Dani and Levitt (1981, Biophys. J. 35: 485–499) introduced a method for calculating ion binding constants from simultaneous measurements of water fluxes and membrane conductance. They found no evidence for second ion binding and calculated dissociation constants of 115 mm for Li, 69 mm for K, and 2 mm for Tl. It is shown here that the two-ion, four-state model predicts a dependence of water permeability on ion concentration that is difficult to distinguish from the predictions of block by a single ion. Using a modified technique that allows measurement of higher conductances, the first ion dissociation constants have been determined as 80 mm for Na, 40 mm for Rb and 15 mm for Cs. These values and those of Dani and Levitt fall in a smooth sequence. The dissociation constant for Cs is consistent with single channel conductances and flux ratios. There is a discrepancy between this constant for Na and the value, 370 mm, calculated from the single channel conductances and the assumption that a second ion cannot enter or affect an occupied pore. The dissociation constant for Rb is intermediate between those for K and Cs whereas tracer flux measurements (Schagina, Grinfeldt & Lev, 1983. J. Membrane Biol. 73: 203–216) have suggested that Rb interacts much more strongly with the channel than Cs.We should like to thank the National Grid plc, for the grant which supported K.-W.W., the Wellcome Trust for a visiting Fellowship for S.T. in Cambridge, and the Cambridge Society of Bombay which supported S.B.H. in Bombay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号