全文获取类型
收费全文 | 73046篇 |
免费 | 5037篇 |
国内免费 | 2647篇 |
专业分类
80730篇 |
出版年
2024年 | 138篇 |
2023年 | 1220篇 |
2022年 | 1809篇 |
2021年 | 2417篇 |
2020年 | 2351篇 |
2019年 | 3274篇 |
2018年 | 2882篇 |
2017年 | 2034篇 |
2016年 | 2011篇 |
2015年 | 2514篇 |
2014年 | 4797篇 |
2013年 | 5923篇 |
2012年 | 3678篇 |
2011年 | 4763篇 |
2010年 | 3642篇 |
2009年 | 3925篇 |
2008年 | 4011篇 |
2007年 | 4015篇 |
2006年 | 3538篇 |
2005年 | 3072篇 |
2004年 | 2706篇 |
2003年 | 2146篇 |
2002年 | 1927篇 |
2001年 | 1228篇 |
2000年 | 957篇 |
1999年 | 972篇 |
1998年 | 976篇 |
1997年 | 764篇 |
1996年 | 684篇 |
1995年 | 613篇 |
1994年 | 565篇 |
1993年 | 431篇 |
1992年 | 432篇 |
1991年 | 357篇 |
1990年 | 293篇 |
1989年 | 241篇 |
1988年 | 211篇 |
1987年 | 184篇 |
1986年 | 161篇 |
1985年 | 274篇 |
1984年 | 456篇 |
1983年 | 337篇 |
1982年 | 347篇 |
1981年 | 264篇 |
1980年 | 203篇 |
1979年 | 194篇 |
1978年 | 172篇 |
1977年 | 143篇 |
1976年 | 115篇 |
1975年 | 109篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
LRG‐1 promotes fat graft survival through the RAB31‐mediated inhibition of hypoxia‐induced apoptosis
Chiakang Ho Danning Zheng Jiaming Sun Dongsheng Wen Shan Wu Li Yu Ya Gao Yifan Zhang Qingfeng Li 《Journal of cellular and molecular medicine》2022,26(11):3153
Autologous adipose tissue is an ideal soft tissue filling material, and its biocompatibility is better than that of artificial tissue substitutes, foreign bodies and heterogeneous materials. Although autologous fat transplantation has many advantages, the low retention rate of adipose tissue limits its clinical application. Here, we identified a secretory glycoprotein, leucine‐rich‐alpha‐2‐glycoprotein 1 (LRG‐1), that could promote fat graft survival through RAB31‐mediated inhibition of hypoxia‐induced apoptosis. We showed that LRG‐1 injection significantly increased the maintenance of fat volume and weight compared with the control. In addition, higher fat integrity, more viable adipocytes and fewer apoptotic cells were observed in the LRG‐1‐treated groups. Furthermore, we discovered that LRG‐1 could reduce the ADSC apoptosis induced by hypoxic conditions. The mechanism underlying the LRG‐1‐mediated suppression of the ADSC apoptosis induced by hypoxia was mediated by the upregulation of RAB31 expression. Using LRG‐1 for fat grafts may prove to be clinically successful for increasing the retention rate of transplanted fat. 相似文献
162.
Ennian Li Kai Wang Bei Zhang Siqi Guo Senhao Xiao Qi Pan Xiaowan Wang Weiying Chen Yunshan Wu Hesong Xu Xiangqian Kong Cheng Luo Shijie Chen Bo Liu 《Journal of enzyme inhibition and medicinal chemistry》2022,37(1):1537
The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour. 相似文献
163.
164.
Mahabub Alam Hiroki Shima Yoshitaka Matsuo Nguyen Chi Long Mitsuyo Matsumoto Yusho Ishii Nichika Sato Takato Sugiyama Risa Nobuta Satoshi Hashimoto Liang Liu Mika K. Kaneko Yukinari Kato Toshifumi Inada Kazuhiko Igarashi 《The Journal of biological chemistry》2022,298(7)
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient. 相似文献
165.
Sudha Ananth Elangovan Gopal Babu Ellappan Vadivel Ganapathy 《Biochemical and biophysical research communications》2010,394(1):75-257
SMCT1 is a Na+-coupled monocarboxylate transporter expressed in a variety of tissues including kidney, thyroid, small intestine, colon, brain, and retina. We found recently that several non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the activity of SMCT1. Here we evaluated the effect of diclofenac, also a NSAID, on SMCT1. SMCT1 cDNA was expressed heterologously in the human retinal pigment epithelial cell lines HRPE and ARPE-19, the human mammary epithelial cell line MCF7, and in Xenopus laevis oocytes. Transport was monitored by substrate uptake and substrate-induced currents. Na+-dependent uptake/current was considered as SMCT1 activity. The effect of diclofenac was evaluated for specificity, dose-response, and influence on transport kinetics. To study the specificity of the diclofenac effect, we evaluated the influence of this NSAID on the activity of several other cloned transporters in mammalian cells under identical conditions. In contrast to several NSAIDs that inhibited SMCT1, diclofenac stimulated SMCT1 when expressed in HRPE and ARPE-19 cells. The stimulation was marked, ranging from 2- to 5-fold depending on the concentration of diclofenac. The stimulation was associated with an increase in the maximal velocity of the transport system as well as with an increase in substrate affinity. The observed effect on SMCT1 was selective because the activity of several other cloned transporters, when expressed in HRPE cells and studied under identical conditions, was not affected by diclofenac. Interestingly, the stimulatory effect on SMCT1 observed in HRPE and ARPE-19 cells was not evident in MCF7 cells nor in the X. laevis expression system, indicating that SMCT1 was not the direct target for diclofenac. The RPE-specific effect suggests that the target of diclofenac that mediates the stimulatory effect is expressed in RPE cells but not in MCF7 cells or in X. laevis oocytes. Since SMCT1 is a concentrative transporter for metabolically important compounds such as pyruvate, lactate, β-hydroxybutyrate, and nicotinate, the stimulation of its activity by diclofenac in RPE cells has biological and clinical significance. 相似文献
166.
Jiang SY Wu MS Chen LM Hung MW Lin HE Chang GG Chang TC 《Biochemical and biophysical research communications》2005,331(2):630-639
The expression of retinoic acid-induced gene 1 (RIG1), a class II tumor suppressor gene, is induced in cells treated with retinoids. RIG1 has been shown to express ubiquitously and the increased expression of this gene appears to suppress cell proliferation. Recent studies also demonstrated that this gene may play an important role in cell differentiation and the progression of cancer. In spite of the remarkable regulatory role of this protein, the molecular mechanism of RIG1 expression induced by retinoids remains to be clarified. The present study was designed to study the molecular mechanism underlying the all-trans retinoic acid (atRA)-mediated induction of RIG1 gene expression. Polymerase chain reaction was used to generate a total of 10 luciferase constructs that contain various fragments of the RIG1 5'-genomic region. These constructs were then transfected into human gastric cancer SC-M1 and breast cancer T47D cells for transactivation analysis. atRA exhibited a significant induction in luciferase activity only through the -4910/-5509 fragment of the 5'-genomic region of RIG1 gene relative to the translation initiation site. Further analysis of this promoter fragment indicated that the primary atRA response region is located in between -5048 and -5403 of the RIG1 gene. Within this region, a direct repeat sequence with five nucleotide spacing, 5'-TGACCTctattTGCCCT-3' (DR5, -5243/-5259), and an inverted repeat sequence with six nucleotide spacing, 5'-AGGCCAtggtaaTGGCCT-3' (IR6, -5323/-5340), were identified. Deletion and mutation of the DR5, but not the IR6 element, abolished the atRA-mediated activity. Electrophoretic mobility shift assays with nuclear extract from atRA-treated cells indicated the binding of retinoic acid receptor (RAR) and retinoid X receptor (RXR) heterodimers specifically to this response element. In addition to the functional DR5, the region contains many other potential sequence elements that are required to maximize the atRA-mediated induction. Taken together, we have identified and characterized the functional atRA response element that is responsible for the atRA-mediated induction of RIG1 gene. 相似文献
167.
A brief review of the genetic studies on ribonuclease P (RNase P) fromEscherichia coli is presented. Temperature-sensitive mutants ofE. coli defective in tRNA processing were isolated by screening cells which were unable to synthesize a suppressor tRNA at restrictive temperature. Structural analysis of accumulated tRNA precursors showed that the isolated mutants were defective in RNase P activity. Analyses of the mutants revealed that the enzyme is essential for the synthesis of all tRNA molecules in cells and that the enzymes consists of two subunits. Analyses of the isolated mutants revealed a possible domain structure of the RNA subunit of the enzyme.Abbreviations
E. coli
Escherichia coli
- RNase P
ribonuclease P 相似文献
168.
Contraction of fibroblast-containing collagen gels: Initial collagen concentration regulates the degree of contraction and cell survival 总被引:7,自引:0,他引:7
Zhu YK Umino T Liu XD Wang HJ Romberger DJ Spurzem JR Rennard SI 《In vitro cellular & developmental biology. Animal》2001,37(1):10-16
Remodeling of extracellular matrix involves a number of steps including the recruitment, accumulation, and eventual apoptosis of parenchymal cells as well as the production, organization, and rearrangement of extracellular matrix produced by these cells. The culture of fibroblasts in three-dimensional gels made of type I collagen has been used as a model of tissue contraction which characterizes both wound repair and fibrosis. The current study was designed to determine the effect of initial collagen concentration on the ability of fibroblasts to contract collagen gels and on cell survival. Native type I collagen was extracted from rat tail tendons and used to prepare collagen gels with varying collagen concentrations (0.75-2.0 mg/ml). Human lung fibroblasts (HFL-1) were cast into the gels and cultured in Dulbecco modified Eagle medium with 0.1% fetal calf serum for 2 wk. The gel size, collagen content, and deoxyribonucleic acid (DNA) content were determined. Gels prepared with an initial concentration of 0.75 mg/ml contracted more rapidly and to a smaller final size than gels prepared from 2 mg/ml initial collagen concentration (final size 7.1 versus 36.4% of initial size, P < 0.01). There was no significant degradation of the collagen in the gels under either condition. Hence, the dramatically increased contraction of the lower density gels resulted in a higher final density (P < 0.01). Cell density was estimated from DNA content. In low initial density gels, the final DNA content was significantly less than that in higher initial density gels (0.73 versus 1.88 microg/gel, P < 0.05). This was accompanied by an increased percentage of apoptotic cells at day 14 (43.3 versus 34.1%, P < 0.05). If the gels were maintained in the attached state which largely prevents contraction, apoptosis was significantly reduced, suggesting that contraction rather than matrix composition was a requirement for the increased apoptosis. In summary, these findings indicate that the initial matrix composition can lead to differing outcomes during fibroblast-mediated wound contraction. 相似文献
169.
170.
Ulrike Winter Nicolas Stankovic‐Valentin Petra Haas Kay Hofmann Henning Urlaub Huib Ovaa Joachim Wittbrodt Erik Meulmeester Frauke Melchior 《EMBO reports》2012,13(10):930-938
Isopeptidases are essential regulators of protein ubiquitination and sumoylation. However, only two families of SUMO isopeptidases are at present known. Here, we report an activity‐based search with the suicide inhibitor haemagglutinin (HA)‐SUMO‐vinylmethylester that led to the identification of a surprising new SUMO protease, ubiquitin‐specific protease‐like 1 (USPL1). Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent SUMO isopeptidase both in vitro and in cells. C13orf22l—an essential but distant zebrafish homologue of USPL1—also acts on SUMO, indicating functional conservation. We have identified invariant USPL1 residues required for SUMO binding and cleavage. USPL1 is a low‐abundance protein that colocalizes with coilin in Cajal bodies. Its depletion does not affect global sumoylation, but causes striking coilin mislocalization and impairs cell proliferation, functions that are not dependent on USPL1 catalytic activity. Thus, USPL1 represents a third type of SUMO protease, with essential functions in Cajal body biology. 相似文献