首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   212篇
  479篇
  2022年   2篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   14篇
  2017年   86篇
  2016年   43篇
  2015年   59篇
  2014年   48篇
  2013年   81篇
  2012年   75篇
  2011年   18篇
  2010年   5篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有479条查询结果,搜索用时 0 毫秒
41.
Proteins in the RecA/Rad51/RadA family form nucleoprotein filaments on DNA that catalyze a strand exchange reaction as part of homologous genetic recombination. Because of the centrality of this system to many aspects of DNA repair, the generation of genetic diversity, and cancer when this system fails or is not properly regulated, these filaments have been the object of many biochemical and biophysical studies. A recent paper has argued that the human Dmc1 protein, a meiotic homolog of bacterial RecA and human Rad51, forms filaments on single-stranded DNA with ∼ 9 subunits per turn in contrast to the filaments formed on double-stranded DNA with ∼ 6.4 subunits per turn and that the stoichiometry of DNA binding is different between these two filaments. We show using scanning transmission electron microscopy that the Dmc1 filament formed on single-stranded DNA has a mass per unit length expected from ∼ 6.5 subunits per turn. More generally, we show how ambiguities in helical symmetry determination can generate incorrect solutions and why one sometimes must use other techniques, such as biochemistry, metal shadowing, or scanning transmission electron microscopy, to resolve these ambiguities. While three-dimensional reconstruction of helical filaments from EM images is a powerful tool, the intrinsic ambiguities that may be present with limited resolution are not sufficiently appreciated.  相似文献   
42.
Acetylcholine (ACh) plays an important role in neural and non-neural function, but its role in mesenchymal stem cell (MSC) migration remains to be determined. In the present study, we have found that ACh induces MSC migration via muscarinic acetylcholine receptors (mAChRs). Among several mAChRs, MSCs express mAChR subtype 1 (m1AChR). ACh induces MSC migration via interaction with mAChR1. MEK1/2 inhibitor PD98059 blocks ERK1/2 phosphorylation while partially inhibiting the ACh-induced MSC migration. InsP3Rs inhibitor 2-APB that inhibits MAPK/ERK phosphorylation completely blocks ACh-mediated MSC migration. Interestingly, intracellular Ca(2+) ATPase-specific inhibitor thapsigargin also completely blocks ACh-induced MSC migration through the depletion of intracellular Ca(2+) storage. PKCα or PKCβ inhibitor or their siRNAs only partially inhibit ACh-induced MSC migration, but PKC-ζ siRNA completely inhibits ACh-induced MSC migration via blocking ERK1/2 phosphorylation. These results indicate that ACh induces MSC migration via Ca(2+), PKC, and ERK1/2 signal pathways.  相似文献   
43.
Chronic exposure to elevated concentration of free fatty acids (FFA) has been verified to induce endoplasmic reticulum (ER) stress, which leads to pancreatic β-cell apoptosis. As one of the medium and long chain FFA receptors, GPR40 is highly expressed in pancreatic β cells, mediates both acute and chronic effects of FFA on β-cell function, but the role of GPR40 in FFA-induced β-cell apoptosis remains unclear. In this study, we investigated the possible effects of GPR40 in palmitate-induced MIN6 β-cell apoptosis, and found that DC260126, a novel small molecular antagonist of GPR40, could protect MIN6 β cells from palmitate-induced ER stress and apoptosis. Similar results were observed in GPR40-deficient MIN6 cells, indicating that palmitate-induced β-cell apoptosis is at least partially dependent on ER stress pathway via GRP40.  相似文献   
44.
Gliobastoma (GB), the most common adult brain tumor, infiltrates normal brain area rendering impossible the complete surgical resection, resulting in a poor median survival (14–15 months), despite the aggressive multimodality treatments post‐surgery, such as radiation and chemo‐therapy. GB is characterized by hypoxic and necrotic regions due to a poorly organized tumor vascularization, leading to inadequate blood supply and consequently to hypoxic and necrotic areas. We have previously shown that, under hypoxia GB primary cells increased the expression of stemness markers as well as the expression of the nuclear receptor peroxisome proliferator‐activated receptor α (PPARα) and also the crucial role played by PPARs in mouse neural stem cells maintenance and differentiation. Due to the importance of lipid signaling in cell proliferation and differentiation, in this work, we analyzed the expression of PPARs in GB neurospheres both in normoxic and hypoxic conditions. The results obtained suggest a differential regulation of the three PPARs by hypoxia, thus indicating a possible therapeutic strategy to counteract GB recurrencies. J. Cell. Biochem. 113: 3342–3352, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
45.
This study examines the abundance of the major protein constituents of the pre-replication complex (pre-RC), both genome-wide and in association with specific replication origins, namely the lamin B2, c-myc, 20mer1, and 20mer2 origins. Several pre-RC protein components, namely ORC1-6, Cdc6, Cdt1, MCM4, MCM7, as well as additional replication proteins, such as Ku70/86, 14-3-3, Cdc45, and PCNA, were comparatively and quantitatively analyzed in both transformed and normal cells. The results show that these proteins are overexpressed and more abundantly bound to chromatin in the transformed compared to normal cells. Interestingly, the 20mer1, 20mer2, and c-myc origins exhibited a two- to threefold greater origin activity and a two- to threefold greater in vivo association of the pre-RC proteins with these origins in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited both similar levels of activity and in vivo association of these pre-RC proteins in both cell types. Overall, the results indicate that cellular transformation is associated with an overexpression and increased chromatin association of the pre-RC proteins. This study is significant, because it represents the most systematic comprehensive analysis done to date, using multiple replication proteins and different replication origins in both normal and transformed cell lines.  相似文献   
46.
Silibinin, an effective chemo-preventive agent in various cancer types, suppresses cancer cell growth, but its effects on cancer stem-like cells (CSLCs) remain unclear. This study aimed to examine whether silibinin inhibited the development of CSLCs and disclose the underlying signaling. The colorectal cancer spheroid culture system was used for enriching CSLCs. The effects of silibinin on CSLCs were evaluated by counting sphere numbers, and calculating the percentage of CD133+ cells by flow cytometry and immunofluorescence both in the absence and presence of different concentrations of silibinin. The results showed the sphere number of CCS was 36 ± 9.6 after 15 days of CSLC enrichment in spheroid culture, and the percentage of CD133+ cells increased to 18 ± 6.4% compared to 3 ± 0.8% before enrichment. Treatment with silibinin reduced the sphere formation to 5 ± 3.3 and decreased the CD133+ percentage to 8 ± 2.3%. Interestingly, treatment of silibinin suppressed the activation of the AKT Ser473/mTOR pathway in spheroid culture through suppressing the activity of protein phosphatase 2Ac subunit (PP2Ac). In a xenograft tumor model, treatment with silibinin also inhibited tumor formation rate and tumor growth. Silibinin, which inhibits colon CSLCs self-renewal and sphere formation by suppressing the PP2Ac/AKT Ser473/mTOR pathway, may be a compound for developing new strategies in modulating CSLCs in cancer therapy.  相似文献   
47.
48.
The quality and safety of human embryonic stem cells (hESCs) in clinical application depend on gene stability. Two Chinese hESC lines, Zh1 and Zh21, were incubated over a long period. We observed and compared the gene stability in the passage numbers 20, 17 for Zh1 cell line and passage numbers 27, 60, 68 for Zh21 cell line. Single nucleotide polymorphisis analysis indicated that hESCs in early passages had relative gene stability; and with the increase in passage number, gene instability became strong. We also found that there were copy number variations (CNVs) in both Zh21 and Zh1. We analyzed the CNVs of Chinese Han Beijing man (CHB; normal Chinese people) and found that the all CNV forms were the loss in Zh21, Zh1, and CHB. We also analyzed and compared the related pathways of the mutant genes. We propose three steps to ensure hESC safety. Firstly, besides the conventional methods such as pluripotent genes, chromosome G‐banding and teratoma, high‐resolution DNA chip analysis should also be adopted; secondly, chromosomal properties are monitored every 10 passages in less than passage 50 and every 5 passages in more than passage 50; thirdly, the related pathways of mutant genes should be observed because only the mutant genes with variations of their related pathways may affected cell functions. J. Cell. Biochem. 113: 3520–3527, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
49.
Abstract

Myeloperoxidase is very susceptible to reducing radicals because the reduction potential of the ferric/ferrous redox couple is much higher compared with other peroxidases. Semiquinone radicals are known to reduce heme proteins. Therefore, the kinetics and spectra of the reactions of p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone with compounds I and II were investi-gated using both sequential-mixing stopped-flow techniques and conventional spectrophotometric measurements. At pH 7 and 15°C the rate constants for compound I reacting with p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone were determined to be 5.6±0.4×107 M-1s-1, 1.3±0.1×106 M-1s-1 and 3.1±0.3×106 M-1s-1, respectively. The corresponding reaction rates for compound II reduction were calculated to be 4.5±0.3×106 M-1s-1, 1.9±0.1×105 M-1s-1 and 4.5±0.2×104 M-1s-1, respectively. Semiquinone radicals, produced by compounds I and II in the classical peroxidation cycle, promote compound III (oxymyeloperoxidase) formation. We could monitor formation of ferrous myeloperoxidase as well as its direct transition to compound III by addition of molecular oxygen. Formation of ferrous myeloperoxidase is shown to depend strongly on the reduction potential of the corresponding redox couple benzoquinone/semiquinone. With 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone as substrate, myeloperoxidase is extremely quickly trapped as compound III. These MPO-typical features could have potential in designing specific drugs which inhibit the production of hypochlorous acid and consequently attenuate inflammatory tissue damage.  相似文献   
50.
CRISPR/Cas gene editing technologies have emerged as powerful tools in the study of oncogenic transformation. The system's specificity, versatility, and ease of implementation allow researchers to identify important molecular markers and pathways which grant cancers stem cell like properties. This technology has already been applied to researching specific cancers, but has seen restricted therapeutic applications due to inherent ethical and technical limitations. Active development and adaptation of the CRISPR/Cas system has produced new methods to take advantage of both non‐homologous end joining and homologous recombination repair mechanisms in attempts to remedy these limitations and improve the versatility of gene edits that can be created. Nonetheless, until issues with specificity and in vivo efficiency are resolved, utilization of CRISPR/Cas systems would be best employed in the modeling and study of various cancer genes. While it may have potential therapeutic applications to targeted cancer therapies in the future, presently CRISPR/Cas is a remarkable technique that can be utilized for easy and efficient gene editing when it comes to cancer research. J. Cell. Biochem. 119: 134–140, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号