首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  58篇
  2022年   3篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
31.
WASP‐family proteins are known to promote assembly of branched actin networks by stimulating the filament‐nucleating activity of the Arp2/3 complex. Here, we show that WASP‐family proteins also function as polymerases that accelerate elongation of uncapped actin filaments. When clustered on a surface, WASP‐family proteins can drive branched actin networks to grow much faster than they could by direct incorporation of soluble monomers. This polymerase activity arises from the coordinated action of two regulatory sequences: (i) a WASP homology 2 (WH2) domain that binds actin, and (ii) a proline‐rich sequence that binds profilin–actin complexes. In the absence of profilin, WH2 domains are sufficient to accelerate filament elongation, but in the presence of profilin, proline‐rich sequences are required to support polymerase activity by (i) bringing polymerization‐competent actin monomers in proximity to growing filament ends, and (ii) promoting shuttling of actin monomers from profilin–actin complexes onto nearby WH2 domains. Unoccupied WH2 domains transiently associate with free filament ends, preventing their growth and dynamically tethering the branched actin network to the WASP‐family proteins that create it. Collaboration between WH2 and proline‐rich sequences thus strikes a balance between filament growth and tethering. Our work expands the number of critical roles that WASP‐family proteins play in the assembly of branched actin networks to at least three: (i) promoting dendritic nucleation; (ii) linking actin networks to membranes; and (iii) accelerating filament elongation.  相似文献   
32.
WASP family proteins induce actin polymerization through a C-terminal verprolin homology, cofilin homology, and acidic (VCA) region by activating the Arp2/3 complex. The N-WASP VCA region is the most potent activator of the Arp2/3 complex. In addition, full-length WAVE1 and a WAVE1 VCA fragment show differential activity. The mechanisms underlying these differences are poorly understood. We examined the activities of various N-WASP and WAVE1 VCA mutant proteins with several types of fusion moieties. When fused to GST, maltose-binding protein, or the WAVE1 proline-rich domain, N-WASP VCA and WAVE1 VCA mutant proteins with two V motifs showed stronger activities than wild-type WAVE1 VCA with one V motif, demonstrating the importance of two V motifs for strong VCA activity. A WAVE1 VCA fragment tagged with six histidines (His) showed markedly reduced activity compared to GST-fused VCA, whereas His-tagged N-WASP VCA showed similar activity to GST-fused VCA. An additional V motif failed to enhance WAVE1 VCA activity in the His-tagged form. Thus, the WAVE1 VCA fragment may exist in an unfavorable conformation to activate the Arp2/3 complex, implying the existence of a structural difference between WAVE1 and N-WASP VCAs in addition to the number of V motifs.  相似文献   
33.
Chemotactic migration of fibroblasts towards growth factors, such as during development and wound healing, requires precise spatial coordination of receptor signalling. However, the mechanisms regulating this remain poorly understood. Here, we demonstrate that β1 integrins are required both for fibroblast chemotaxis towards platelet-derived growth factor (PDGF) and growth factor-induced dorsal ruffling. Mechanistically, we show that β1 integrin stabilises and spatially regulates the actin nucleating endocytic protein neuronal Wiskott–Aldrich syndrome protein (N-WASP) to facilitate PDGF receptor traffic and directed motility. Furthermore, we show that in intact cells, PDGF binding leads to rapid activation of β1 integrin within newly assembled actin-rich membrane ruffles. Active β1 in turn controls assembly of N-WASP complexes with both Cdc42 and WASP-interacting protein (WIP), the latter of which acts to stabilise the N-WASP. Both of these protein complexes are required for PDGF internalisation and fibroblast chemotaxis downstream of β1 integrins. This represents a novel mechanism by which integrins cooperate with growth factor receptors to promote localised signalling and directed cell motility.  相似文献   
34.
Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro‐inflammatory mediators. We examined mechanisms of LPS‐stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage‐like J774 cells. A wound‐healing assay revealed that LPS also activated directed cell movement that was followed by TNF‐α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5‐bisphosphate. Fractionation of Triton X‐100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin‐regulatory proteins, paxillin on tyrosine 118 by 80% and N‐WASP on serine 484/485 by 20%, and these events preceded activation of NF‐κB. LPS‐induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N‐WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS‐stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF‐α production suggesting that LPS‐induced cell motility is not required for TNF‐α release. J. Cell. Biochem. 113: 80–92, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
35.
Wiskott-Aldrich Syndrome (WAS) is a severe X-linked disorder characterised by immune deficiency, thrombocytopenia and eczema, resulting from abnormalities in a range of haematopoietic cell types. The protein that is defective in WAS, named WASP, appears to be involved in regulating changes in the cytoskeletal organisation of haematopoietic cells in response to external stimuli. In support of this idea, WASP has been found to be physically associated in haematopoietic cells in vivo with a number of SH3 domain-containing proteins involved in signal transduction, including the cytoplasmic protein-tyrosine kinase Fyn. Here, we have used a baculovirus expression system to explore the biochemical consequences of the interaction between WASP and Fyn. We find that the kinase activity of Fyn is stimulated as a result of binding to WASP, and that a cellular protein, which may be WASP itself, becomes phosphorylated on tyrosine as a result of the binding of WASP to Fyn.  相似文献   
36.
Formation of lamellipodia is the first step during cell migration, and involves actin reassembly at the leading edge of migrating cells through the membrane transport of WAVE2. However, the factors that regulate WAVE2 transport to the cell periphery for initiating lamellipodia formation have not been elucidated. We report here that in human breast cancer MDA-MB-231 cells, the hepatocyte growth factor (HGF) induced the association between the constitutive complex of βPIX and GIT1 with WAVE2, which was concomitant with the induction of lamellipodia formation and WAVE2 transport. Although depletion of βPIX by RNA interference abrogated the HGF-induced WAVE2 transport and lamellipodia formation, GIT1 depletion caused HGF-independent WAVE2 transport and lamellipodia formation. Collectively, we suggest that βPIX releases cells from the GIT1-mediated suppression of HGF-independent responses and recruits GIT1 to WAVE2, thereby facilitating HGF-induced WAVE2 transport and lamellipodia formation.  相似文献   
37.
In osteoclasts, polyphosphoinositides such as phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5 trisphosphate (PI(3,4,5)P3) are produced in response to integrin alphavbeta3 signaling and they have a critical role in actin cytoskeleton remodeling. The levels of PI(4,5)P2 and PI(3,4,5)P3 are regulated by Rho GTPase through the activation of phosphatidylinositol 4-phosphate 5-kinase (PI4P-5 kinase) and phospatidylinositol 3-kinase (PI3 kinase), respectively. Interaction of PI(4,5)P2 with gelsolin and Wiscott-Aldrich syndrome protein (WASP) is critical for podosome assembly/disassembly and actin ring formation in osteoclasts. Interaction of PI(3,4,5)P3 with gelsolin functions in orchestrating the podosome signaling complex consisting of several key signaling molecules. Gelsolin deficiency has been shown to block podosome assembly and motility in mouse osteoclasts. However, these osteoclasts are able to form a WASP-containing actin ring and retain their resorptive function. The TAT-mediated delivery of gelsolin phosphoinositide-binding domains into osteoclasts resulted in production of podosome clusters and disruption of actin ring formation. Hence, these osteoclasts were hypomotile and less resorptive. Our observations suggest that both PI(4,5)P2 and PI(3,4,5)P3 are involved in regulating osteoclast functions through modulation of severing, capping, and nucleating functions of actin-binding proteins.  相似文献   
38.
Cells from the myeloid lineage, namely macrophages, dendritic cells and osteoclasts, develop podosomes instead of stress fibers and focal adhesions to adhere and migrate. Podosomes share many components with focal adhesions but differ in their molecular organization, with a dense core of polymerized actin surrounded by scaffolding proteins, kinases and integrins. Podosomes are found either isolated both in macrophages and dendritic cells or arranged into superstructures in osteoclasts. When osteoclasts resorb bone, they form an F-actin rich sealing zone, which is a dense array of connected podosomes that firmly anchors osteoclasts to bone. It delineates a compartment in which protons and proteases are secreted to dissolve and degrade the mineralized matrix. Since Rho GTPases have been shown to control F-actin stress fibers and focal adhesions in mesenchymal cells, the question of whether they could also control podosome formation and arrangement in cells from the myeloid lineage, and particularly in osteoclasts, rapidly emerged. This article considers recent advances made in our understanding of podosome arrangements in osteoclasts and how Rho GTPases may control it.  相似文献   
39.
Rho GTPase signaling in Dictyostelium discoideum: Insights from the genome   总被引:1,自引:0,他引:1  
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches participating in the regulation of many cellular processes. We present an inventory of proteins involved in Rho-regulated signaling pathways in Dictyostelium discoideum that have been identified in the completed genome sequence. In Dictyostelium the Rho family is encoded by 18 genes and one pseudogene. Some of the Rho GTPases (Rac1a/b/c, RacF1/F2 and RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily. The Cdc42 and Rho subfamilies, characteristic of metazoa and fungi, are absent. The activities of these GTPases are regulated by two members of the RhoGDI family, by eight members of the Dock180/zizimin family and by a surprisingly large number of proteins carrying RhoGEF (42 genes) or RhoGAP (43 genes) domains or both (three genes). Most of these show domain compositions not found in other organisms, although some have clear homologs in metazoa and/or fungi. Among the (in many cases putative) effectors found in Dictyostelium are the CRIB domain proteins (WASP and two related proteins, eight PAK kinases and a novel gelsolin-related protein), components of the Scar/WAVE complex, 10 formins, four IQGAPs, two members of the PCH family, numerous lipid kinases and phospholipases, and components of the NADPH oxidase and the exocyst complexes. In general, the repertoire of Rho signaling components of Dictyostelium is similar to that of metazoa and fungi.  相似文献   
40.
Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP. To test whether N-WASP can compensate for the loss of WASP and restore actin cytoskeleton integrity, N-WASP was overexpressed in macrophages, in which endogenous WASP expression was reduced by short hairpin RNA (shWASP cells). Many of the defects associated with the loss of WASP, such as podosome-dependent matrix degradation and chemotaxis were corrected when N-WASP was expressed at equimolar level to that of the wild-type WASP. Furthermore, the ability of N-WASP to partially compensate for the loss of WASP may be physiologically relevant since activated murine WASP-deficient peritoneal macrophages, which show enhanced N-WASP expression, also show an increase in matrix degradation. Our study suggests that expression levels of WASP and N-WASP may influence their roles in actin cytoskeleton rearrangement and shed light to the complex intertwining roles WASP and N-WASP play in macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号