首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   3篇
  国内免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   15篇
  2010年   14篇
  2009年   6篇
  2008年   12篇
  2007年   14篇
  2006年   7篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   5篇
  2000年   10篇
  1999年   7篇
  1998年   10篇
  1997年   10篇
  1996年   10篇
  1995年   10篇
  1994年   4篇
  1993年   11篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1977年   1篇
排序方式: 共有247条查询结果,搜索用时 62 毫秒
121.
The localization and control of Bcl-2 proteins on mitochondria is essential for the intrinsic pathway of apoptosis. Anti-apoptotic Bcl-2 proteins reside on the outer mitochondrial membrane (OMM) and prevent apoptosis by inhibiting the activation of the pro-apoptotic family members Bax and Bak. The Bcl-2 subfamily of BH3-only proteins can either inhibit the anti-apoptotic proteins or directly activate Bax or Bak. How these proteins interact with each other, the mitochondrial surface and within the OMM are complex processes we are only beginning to understand. However, these interactions are fundamental for the transduction of apoptotic signals to mitochondria and the subsequent release of caspase activating factors into the cytosol. In this review we will discuss our knowledge of how Bcl-2 proteins are directed to mitochondria in the first place, a crucial but poorly understood aspect of their regulation. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   
122.
The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.  相似文献   
123.
电压敏感染料成像(voltage sensitiVe dye imaging,VSDI)技术利用结合在神经细胞脂膜上的染料,将膜电位转化为荧光或光吸收信号,并用光学成像方法对神经电活动进行多点测量.VSDI在过去的50年内发展迅速,其良好的时空分辨率使它成为一种在介观(mesoscopic)时空尺度上研究神经元群体电活...  相似文献   
124.

Background

Phototropins are UV-A/blue light receptor proteins with two LOV (Light-Oxygen-Voltage) sensor domains at their N terminus and a kinase domain at the C-terminus in photoautotrophic organisms. This is the first research report of a canonical phototropin from marine algae Ostreococcus tauri.

Methods

We synthesized core LOV1 (OtLOV1) domain-encoding portion of the phototropin gene of O. tauri, the domain was heterologously expressed, purified and assessed for its spectral properties and dark recovery kinetics by UV–Visible, fluorescence spectroscopy and mutational studies. Quaternary structure characteristics were studied by SEC and glutaraldehyde crosslinking.

Results

The absorption spectrum of OtLOV1 lacks the characteristic 361 nm peak shown by other LOV1 domains. It undergoes a photocycle with a dark state recovery time of approximately 30 min (τ = 300.35 s). Native OtLOV1 stayed as dimer in aqueous solution and the dimer formation was light and concentration independent. Mutating isoleucine at 43rd position to valine accelerated the dark recovery time by more than 10-fold. Mutating it to serine reduced sensitivity to blue light, but the dark recovery time remained unaltered. I43S mutation also destabilized the FMN binding to a great extent.

Conclusion

The OtLOV1 domain of the newly identified OtPhot is functional and the isoleucine at position 43 of OtLOV1 is the key residue responsible for fine-tuning the domain properties.

General significance

This is the first characterized LOV1 domain of a canonical phototropin from a marine alga and spectral properties of the domain are similar to that of the LOV1 domain of higher plants.  相似文献   
125.
Abstract: 45Ca2+ uptake by synaptosomes isolated from cerebral cortex, cerebellum, midbrain, and brain stem of male Sprague-Dawley rats was measured at 1-, 3-, 5-, 15-, 30-, and 60-s time periods. The fastest rate of depolarization-dependent calcium uptake occurred in each brain region between 0 and 1 s. Uptake rates dropped off quickly with 3–5-s rates at approximately 15–20% of those observed at 0–1 s in cerebral cortex, cerebellum, and midbrain. Uptake rates at the 1–3-s interval were maintained at a relatively high rate in these three brain regions suggesting mixed fast- and slow-phase processes. The magnitude and rate of 45Ca2+ uptake were similar in synaptosomes from cerebral cortex, cerebellum, and midbrain but were significantly less in brain stem synaptosomes. These results suggest a fast and a slow component to voltage-dependent 45Ca2+ uptake by presynaptic nerve terminals from various brain regions.  相似文献   
126.
Growing axons are directed by an extracellular electric field in a process known as galvanotropism. The electric field is a predominant guidance cue directing retinal ganglion cell (RGC) axons to the future optic disc during embryonic development. Specifically, the axons of newborn RGCs grow along the extracellular voltage gradient that exists endogenously in the embryonic retina (Yamashita, 2013 [8]). To investigate the molecular mechanisms underlying galvanotropic behaviour, the quantification of the electric effect on axon orientation must be examined. In the present study, a culture system was built to apply a constant, uniform direct current (DC) electric field by supplying an electrical current to the culture medium, and this system also continuously recorded the voltage difference between the two points in the medium. A negative feedback circuit was designed to regulate the supplied current to maintain the voltage difference at the desired value. A chick embryo retinal strip was placed between the two points and cultured for 24 h in an electric field in the opposite direction to the endogenous field, and growing axons were fluorescently labelled for live cell imaging (calcein-AM). The strength of the exogenous field varied from 0.0005 mV/mm to 10.0 mV/mm. The results showed that RGC axons grew in the reverse direction towards the cathode at voltage gradients of ≥0.0005 mV/mm, and straightforward extensions were found in fields of ≥0.2–0.5 mV/mm, which were far weaker than the endogenous voltage gradient (15 mV/mm). These findings suggest that the endogenous electric field is sufficient to guide RGC axons in vivo.  相似文献   
127.
128.
AIM: Functional characterization of ATP1A2 mutations that are related to familial or sporadic hemiplegic migraine(FHM2, SHM). METHODS: cRNA of human Na+/K+-ATPase α2- and β1-subunits were injected in Xenopus laevis oocytes. FHM2 or SHM mutations of residues located in putative α/β interaction sites or in the α2-subunit's C-terminal region were investigated. Mutants were analyzed by the twoelectrode voltage-clamp(TEVC) technique on Xenopus oocytes. Stationary K+-induced Na+/K+ pump currents were measured, and the voltage dependence of apparent K+ affinity was investigated. Transient currents were recorded as ouabain-sensitive currents in Na+ buffers to analyze kinetics and voltage-dependent presteady state charge translocations. The expression of constructs was verified by preparation of plasma membrane and total membrane fractions of cRNA-injected oocytes. RESULTS: Compared to the wild-type enzyme, the mutants G900R and E902K showed no significant dif-ferences in the voltage dependence of K+-induced currents, and analysis of the transient currents indicated that the extracellular Na+ affinity was not affected. Mutant G855R showed no pump activity detectable by TEVC. Also for L994del and Y1009X, pump currents could not be recorded. Analysis of the plasma and total membrane fractions showed that the expressed proteins were not or only minimally targeted to the plasma membrane. Whereas the mutation K1003E had no impact on K+ interaction, D999H affected the voltage dependence of K+-induced currents. Furthermore, kinetics of the transient currents was altered compared to the wild-type enzyme, and the apparent affinity for extracellular Na+ was reduced. CONCLUSION: The investigated FHM2/SHM mutations influence protein function differently depending on the structural impact of the mutated residue.  相似文献   
129.
Polyunsaturated Fatty Acid Modulation of Voltage-Gated Ion Channels   总被引:2,自引:0,他引:2  
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.  相似文献   
130.
Normal cells of aerobic organisms synthesize the energy they require in the form of ATP via the process of oxidative phosphorylation. This complex system resides in the mitochondria of cells and utilizes oxygen to produce a majority of cellular ATP. However, in most tumors, especially those with elevated cholesterogenesis, there is an increased reliance on glycolysis for energy, even in conditions where oxygen is available. This aerobic glycolysis (the Warburg effect) has far reaching ramifications on the tumor itself and the cells that surround it. In this brief review, we will discuss how abnormally high membrane cholesterol levels can result in a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH-7777). We have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution and transport. Work in our laboratory demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号