首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   34篇
  国内免费   14篇
  2024年   6篇
  2023年   17篇
  2022年   20篇
  2021年   39篇
  2020年   45篇
  2019年   47篇
  2018年   15篇
  2017年   18篇
  2016年   17篇
  2015年   20篇
  2014年   38篇
  2013年   34篇
  2012年   26篇
  2011年   14篇
  2010年   10篇
  2009年   22篇
  2008年   26篇
  2007年   17篇
  2006年   16篇
  2005年   9篇
  2004年   16篇
  2003年   19篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1979年   1篇
排序方式: 共有547条查询结果,搜索用时 205 毫秒
161.
Becoming invasive is a crucial step in cancer development, and the early spread of tumour cells is usually undetected by current imaging technologies. In patients with cancer and no signs of overt metastases, sensitive methods have been developed to identify circulating autoantibodies and their antigen counterparts in several cancers. These technologies are often based on proteomic approaches, and recent advances in protein and antibody microarrays have greatly facilitated the discovery of new antibody biomarkers in sera from cancer patients. Interestingly, in a clinical application setting, combinations of multiple autoantibody reactivities into panel assays have recently been proposed as relevant screening tests and validated in several independent trials. In addition, autoantibody signatures seem to be particularly relevant for early detection of cancer in high-risk cancer patients. In this review, we highlight the concept that immunogenic epitopes associated with the humoural response and key pathogenic pathways elicit serum autoantibodies that can be considered as relevant cancer biomarkers. We outline the proteomic strategies employed to identify and validate their use in clinical practice for cancer screening and diagnosis. We particularly emphasize the clinical utility of autoantibody signatures in several cancers. Finally, we discuss the challenges remaining for clinical validation.  相似文献   
162.
Acute myelocytic leukemia (AML) is an aggressive malignant tumor and typically fatal without treatment. Identification and development of novel biomarkers could be beneficial for the diagnosis and prognosis of AML patients. Here, we aimed to identify the accurate DNA methylation prognostic signatures for AML patients. The DNA methylation data of AML patients and corresponding clinical information were retrieved from The Cancer Genome Atlas database. CPG sites that correlates closely with the survival of the AML patients were identified and further combined into CPG sites pairs to screen the survival-related pairs. The prognostic signatures were identified by the C-index and forward search algorithms and validated by the verification group. Finally, the functional enrichment analysis was performed on these CPG sites. As a result, a total of 498 CPG sites associated with the overall survival of AML patients was obtained. A prognostic signature composed of 10 CPG sites pairs was obtained and validated. The functional enrichment analysis showed prognostic genes were mainly enriched in tumor protein processing, cell differentiation, blood leukocyte immunity, and platelet growth factor pathways. In summary, we identified two accurate prognostic methylation signatures (NDRG2 and TLR7), which would be served as a novel therapy target for AML.  相似文献   
163.
164.
Epigenetic factors play a critical role in carcinogenesis by imparting a distinct feature to the chromatin architecture. The present study aimed to develop a novel epigenetic signature for evaluating the relapse-free survival of colon cancer patients. Public microarray datasets were acquired from the Gene Expression Omnibus databases: GSE39582, GSE17538, GSE33113, and GSE37892 set. Patients from GSE39582 set were randomized 1:1 into training and internal validation series. Patients were divided into high-risk and low-risk groups in training series based on a set of 11 epigenetic factors (p < .001). The good reproducibility for the prognostic value of the epigenetic signature was confirmed in the internal validation series (p < .001), external validation series (a combination of GSE17538 set, GSE33113 set, and GSE37892 set; p = .018), and entire series (p < .001). Furthermore, a nomogram, which integrated the epigenetic signature, pathological stage, and postoperative chemotherapy, was developed based on the GSE39582 set. The time-dependent receiver operating characteristic curve at 1 year demonstrated that the comprehensive signature presented superior prognostic value than the pathological stage. In conclusion, an epigenetic signature, which could be utilized to divide colon cancer patients into two groups with significantly different risk of relapse, was established. This biomarker would aid in identifying patients who require an intensive follow-up and aggressive therapeutic intervention.  相似文献   
165.
The transition from non–muscle‐invasive bladder cancer (NMIBC) to muscle‐invasive bladder cancer (MIBC) is detrimental to bladder cancer (BLCA) patients. Here, we aimed to study the underlying mechanism of the subtype transition. Gene set variation analysis (GSVA) revealed the epithelial‐mesenchymal transition (EMT) signalling pathway with the most positive correlation in this transition. Then, we built a LASSO Cox regression model of an EMT‐related gene signature in BLCA. The patients with high risk scores had significantly worse overall survival (OS) and disease‐free survival (DFS) than those with low risk scores. The EMT‐related gene signature also performed favourably in the accuracy of prognosis and in the subtype survival analysis. Univariate and multivariate Cox regression analyses demonstrated that the EMT‐related gene signature, pathological N stage and age were independent prognostic factors for predicting survival in BLCA patients. Furthermore, the predictive nomogram model was able to effectively predict the outcome of BLCA patients by appropriately stratifying the risk score. In conclusion, we developed a novel EMT‐related gene signature that has tumour‐promoting effects, acts as a negative independent prognostic factor and might facilitate personalized counselling and treatment in BLCA.  相似文献   
166.
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.  相似文献   
167.
168.
The assessment of genetic architecture and selection history in genes for behavioural traits is fundamental to our understanding of how these traits evolve. The dopamine receptor D4 (DRD4) gene is a prime candidate for explaining genetic variation in novelty seeking behaviour, a commonly assayed personality trait in animals. Previously, we showed that a single nucleotide polymorphism in exon 3 of this gene is associated with exploratory behaviour in at least one of four Western European great tit (Parus major) populations. These heterogeneous association results were explained by potential variable linkage disequilibrium (LD) patterns between this marker and the causal variant or by other genetic or environmental differences among the populations. Different adaptive histories are further hypothesized to have contributed to these population differences. Here, we genotyped 98 polymorphisms of the complete DRD4 gene including the flanking regions for 595 individuals of the four populations. We show that the LD structure, specifically around the original exon 3 SNP is conserved across the four populations and does not explain the heterogeneous association results. Study‐wide significant associations with exploratory behaviour were detected in more than one haplotype block around exon 2, 3 and 4 in two of the four tested populations with different allele effect models. This indicates genetic heterogeneity in the association between multiple DRD4 polymorphisms and exploratory behaviour across populations. The association signals were in or close to regions with signatures of positive selection. We therefore hypothesize that variation in exploratory and other dopamine‐related behaviour evolves locally by occasional adaptive shifts in the frequency of underlying genetic variants.  相似文献   
169.
When a species colonizes an urban habitat, differences in the environment can create novel selection pressures. Successful colonization will further lead to demographic perturbations and genetic drift, which can interfere with selection. Here, we test for consistent urban selection signals in multiple populations of the burrowing owl (Athene cunicularia), a species that colonized South American cities just a few decades ago. We sequenced 213 owls from three urban‐rural population pairs and performed a genome‐wide comparison of urban against rural birds. We further studied genome‐wide associations with flight initiation distance, a measure of harm avoidance in which urban and rural birds are known to differ. Based on four samples taken over nine years from one of the urban populations, we investigated temporal allele frequency changes. The genomic data were also used to identify urban‐specific signatures of selective sweeps. Single genomic sites did not reach genome‐wide significance for any association. However, a gene‐set analysis on the strongest signals from these four selection scans suggests a significant enrichment of genes with known functions related to synapses and neuron projections. We identified 98 genes predominantly expressed in the brain, of which many may play a role in the modulation of brain connectivity and consequently in cognitive function and motivational behaviour during urbanization. Furthermore, polymorphisms in the promoter region of the synaptic SERT gene – one of the two candidates known to correlate with urban colonization in birds – associated with the habitat in which individuals lived (urban vs. rural).  相似文献   
170.
Reggiana is an autochthonous cattle breed reared mainly in the province of Reggio Emilia, located in the North of Italy. Reggiana cattle (originally a triple-purpose population largely diffused in the North of Italy) are characterised by a typical solid red coat colour. About 2500 cows of this breed are currently registered to its herd book. Reggiana is now considered a dual-purpose breed even if it is almost completely dedicated to the production of a mono-breed branded Protected Designation of Origin Parmigiano-Reggiano cheese, which is the main driver of the sustainable conservation of this local genetic resource. In this study, we provided the first overview of genomic footprints that characterise Reggiana and define the diversity of this local cattle breed. A total of 168 Reggiana sires (all bulls born over 35 years for which semen was available) and other 3321 sires from 3 cosmopolitan breeds (Brown, Holstein and Simmental) were genotyped with the Illumina BovineSNP50 panel. ADMIXTURE analysis suggested that Reggiana breed might have been influenced, at least in part, by the other three breeds included in this study. Selection signatures in the Reggiana genome were identified using three statistical approaches based on allele frequency differences among populations or on properties of haplotypes segregating in the populations (fixation index (FST); integrated haplotype score; cross-population extended haplotype homozygosity). We identified several regions under peculiar selection in the Reggiana breed, particularly on bovine chromosome (BTA) 6 in the KIT gene region, that is known to be involved in coat colour pattern distribution, and within the region of the LAP3, NCAPG and LCORL genes, that are associated with stature, conformation and carcass traits. Another already known region that includes the PLAG1 gene (BTA14), associated with conformation traits, showed a selection signature in the Reggiana cattle. On BTA18, a signal of selection included the MC1R gene that causes the red coat colour in cattle. Other selection sweeps were in regions, with high density of quantitative trait loci for milk production traits (on BTA20) and in several other large regions that might have contributed to shape and define the Reggiana genome (on BTA17 and BTA29). All these results, overall, indicate that the Reggiana genome might still contain several signs of its multipurpose and non-specialised utilisation, as already described for other local cattle populations, in addition to footprints derived by its ancestral origin and by its adaptation to the specialised Parmigiano-Reggiano cheese production system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号