首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2345篇
  免费   39篇
  国内免费   232篇
  2616篇
  2023年   11篇
  2022年   37篇
  2021年   43篇
  2020年   24篇
  2019年   42篇
  2018年   34篇
  2017年   18篇
  2016年   27篇
  2015年   81篇
  2014年   201篇
  2013年   274篇
  2012年   269篇
  2011年   273篇
  2010年   296篇
  2009年   58篇
  2008年   58篇
  2007年   70篇
  2006年   69篇
  2005年   70篇
  2004年   52篇
  2003年   36篇
  2002年   52篇
  2001年   30篇
  2000年   28篇
  1999年   21篇
  1998年   24篇
  1997年   24篇
  1996年   50篇
  1995年   33篇
  1994年   46篇
  1993年   28篇
  1992年   25篇
  1991年   23篇
  1990年   27篇
  1989年   30篇
  1988年   11篇
  1987年   13篇
  1986年   14篇
  1985年   15篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   7篇
  1976年   4篇
  1974年   6篇
  1973年   4篇
排序方式: 共有2616条查询结果,搜索用时 0 毫秒
21.
Diabetes mellitus is characterized by an impairment of glucose uptake even though blood glucose levels are increased. Methylglyoxal is derived from glycolysis and has been implicated in the development of diabetes mellitus, because methylglyoxal levels in blood and tissues are higher in diabetic patients than in healthy individuals. However, it remains to be elucidated whether such factors are a cause, or consequence, of diabetes. Here, we show that methylglyoxal inhibits the activity of mammalian glucose transporters using recombinant Saccharomyces cerevisiae cells genetically lacking all hexose transporters but carrying cDNA for human GLUT1 or rat GLUT4. We found that methylglyoxal inhibits yeast hexose transporters also. Glucose uptake was reduced in a stepwise manner following treatment with methylglyoxal, i.e. a rapid reduction within 5 min, followed by a slow and gradual reduction. The rapid reduction was due to the inhibitory effect of methylglyoxal on hexose transporters, whereas the slow and gradual reduction seemed due to endocytosis, which leads to a decrease in the amount of hexose transporters on the plasma membrane. We found that Rsp5, a HECT-type ubiquitin ligase, is responsible for the ubiquitination of hexose transporters. Intriguingly, Plc1 (phospholipase C) negatively regulated the endocytosis of hexose transporters in an Rsp5-dependent manner, although the methylglyoxal-induced endocytosis of hexose transporters occurred irrespective of Plc1. Meanwhile, the internalization of hexose transporters following treatment with methylglyoxal was delayed in a mutant defective in protein kinase C.  相似文献   
22.
Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrP(C) (PrP(Sc)) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrP(Sc) to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23-231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23-231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrP(Sc) by stabilizing the conformation of PrP(C) or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrP(Sc) deposits.  相似文献   
23.
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.  相似文献   
24.
先在基础培养基中添加苦参水煎汁,然后培养灵芝,得到灵芝培养液,再按乙醇氯仿-5%碳酸氢钠溶液-氯仿的顺序提取培养液中的有机酸成分,用制备高效液相色谱分离,得到6个新组分,用这些组分分别作用于转染了乙型肝炎病毒DNA的2.2.15细胞,用固相放射免疫法测定细胞培养上清液中的乙肝病毒表面抗原(HBsAg)和e抗原(HBeAg)的含量,用四甲基偶氮唑盐(MTT)法测定细胞的存活率。结果表明,其中的3个组分对2.2.15细胞分泌HBsAg和HBeAg有抑制作用,提示可能具有抗乙肝病毒的作用。  相似文献   
25.
Antiretroviral cytidine deaminase APOBEC3G, which is abundantly expressed in peripheral blood lymphocytes and macrophages, strongly protects these cells against HIV-1 infection. The HIV-1 Vif protein overcomes this antiviral effect by enhancing proteasome-mediated APOBEC3G degradation and is key for maintaining viral infectivity. The 579-bp-long vif gene displays high genetic diversity among HIV-1 subtypes. Therefore, it is intriguing to address whether Vif proteins derived from different subtypes differ in their viral defense activity against APOBEC3G. Expression plasmids encoding Vif proteins derived from subtypes A, B, C, CRF01_AE, and CRF02_AG isolates were created, and their anti-APOBEC3G activities were compared. Viruses produced from cells expressing APOBEC3G and Vif proteins from different subtypes showed relatively different viral infectivities. Notably, subtype C-derived Vif proteins tested had the highest activity against APOBEC3G that was ascribed to its increased binding activity, for which the N-terminal domain of the Vif protein sequences was responsible. These results suggest that the biological differences of Vif proteins belonging to different subtypes might affect viral fitness and quasispecies in vivo.  相似文献   
26.
几种昆虫病毒交叉感染玉米螟的研究   总被引:1,自引:0,他引:1  
银纹夜蛾NPV(P_aNPV)、柞蚕NPV(ApNPV)和赤松毛虫CPV(D_aCPV)可感染玉米螟。D_aCPV对玉米螟1龄幼虫的ID_(50)为5.9×10~5PIB/ml饲料,对幼虫的生长发育、蛹重、羽化率和成虫寿命有显著影响。D_aCPV主要侵染幼虫中肠柱状细胞,在细胞质中增殖;P_aNPV和A_pNPV主要侵染幼虫的体壁细胞和气管壁细胞。D_aCPV在玉米螟幼虫体内增殖后,多角体形态由正六角形变为锥形或四方形;成虫羽化时排出的蛹便可观察到多角体,病毒可传递给子代。利用其他昆虫病毒有防治玉米螟的可能性。  相似文献   
27.
Despite the considerable progress made in the stent development in the last decades, cardiovascular diseases remain the main cause of death in western countries. Beside the benefits offered by the development of different drug-eluting stents, the coronary revascularization bears also the life-threatening risks of in-stent thrombosis and restenosis. Research on new therapeutic strategies is impaired by the lack of appropriate methods to study stent implantation and restenosis processes. Here, we describe a rapid and accessible procedure of stent implantation in mouse carotid artery, which offers the possibility to study in a convenient way the molecular mechanisms of vessel remodeling and the effects of different drug coatings.  相似文献   
28.
RIG-I-like receptors (RLRs) are cytoplasmic sensors for viral RNA that elicit antiviral innate immune responses. RLR signaling culminates in the activation of the protein kinase TBK1, which mediates phosphorylation and nuclear translocation of IRF3 that regulates expression of type I interferon genes. Here, we found that Nucleoporin 93 (Nup93), components of nuclear pore complex (NPC), plays an important role in RLR-mediated antiviral responses. Nup93-deficient RAW264.7 macrophage cells exhibited decreased expression of Ifnb1 and Cxcl10 genes after treatment with a synthetic RLR agonist stimulation as well as Newcastle Disease Virus infection. Silencing Nup93 in murine primary macrophages and embryonic fibroblasts also resulted in reduced expression of these genes. IRF3 nuclear translocation during RLR signaling was impaired in Nup93-deficient RAW264.7 cells. Notably, the activation of TBK1 during RLR signaling was also decreased in Nup93-deficient cells. We found that Nup93 formed a complex with TBK1, and Nup93 overexpression enhanced TBK1-mediated IFNβ promoter activation. Taken together, our findings suggest that Nup93 regulates antiviral innate immunity by enhancing TBK1 activity and IRF3 nuclear translocation.  相似文献   
29.
The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport.  相似文献   
30.
Cilia and flagella are microtubule‐based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule‐interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy‐related disorders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号