首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   8篇
  国内免费   1篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2014年   2篇
  2013年   9篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   5篇
  2006年   7篇
  2005年   5篇
  2004年   10篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
排序方式: 共有125条查询结果,搜索用时 31 毫秒
71.
Aims: Determine whether certain, natural phenolic compounds enhance activity of commercial antifungal drugs against yeast strains of Candida and Cryptococcus neoformans. Methods and Results: Twelve natural phenolics were examined for fungicidal activity against nine reference strains of Candida and one of C. neoformans. Six compounds were selected for synergistic enhancement of antifungal drugs, amphotericin B (AMB), fluconazole (FLU) and itraconazole (ITR). Matrix assays of phenolic and drug combinations conducted against one reference strain, each, of Candida albicans and C. neoformans showed cinnamic and benzoic acids, thymol, and 2,3‐ and 2,5‐dihydroxybenzaldehydes (‐DBA) had synergistic interactions depending upon drug and yeast strain. 2,5‐DBA was synergistic with almost all drug and strain combinations. Thymol was synergistic with all drugs against Ca. albicans and with AMB in C. neoformans. Combinations of benzoic acid or thymol with ITR showed highest synergistic activity. Of 36 combinations of natural product and drug tested, none were antagonistic. Conclusions: Relatively nontoxic natural products can synergistically enhance antifungal drug activity, in vitro. Significance and Impact of the Study: This is a proof‐of‐concept, having clinical implications. Natural chemosensitizing agents could lower dosages needed for effective chemotherapy of invasive mycoses. Further studies against clinical yeast strains and use of animal models are warranted.  相似文献   
72.
Supplementary UV-B (12.2 kJ m−2 d−1 UV-BBE) provided to Vigna radiata for 2 h d−1 suppressed the length of root, shoot and whole plants, number of leaves, total leaf area, leaf area index, specific leaf mass, fresh and dry mass of leaves and shoot, relative growth rate and net productivity. In unstressed green gram plants (10 kJ m−2 d−1 UV-BBE), triadimefon (TRIAD) (20 mg dm−3) enhanced growth in all parameters over control. The growth promoting effect of TRIAD enabled the UV-B impacted plants to overcome the growth inhibitions to varying degrees indicating its protective potential against UV-B stress. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
73.
Organic esters are employed as solvents, fragrance, flavors, and precursors in a variety of industries. Particularly, aliphatic esters are greatly used in flavor industry, mainly as fixatives and modifiers, and aromatic esters in fragrance compositions. Esters are produced by a variety of methods among which esterification and transesterification with acid catalysts under reflux conditions are prominent. The use of biocatalysts provides an opportunity for carrying out reactions under milder conditions leading to better quality products suitable in fragrance and flavor industry. Transesterification of n-octanol with vinyl acetate was studied at 30 °C as a model reaction by employing different lipases as catalysts such as Psedomonas species lipase immobilized on diatomite, free Candida rugosa lipase. Novozym 435 (lipase B from Candida antarctica; immobilized on macro-porous polyacrylic resin beads) and Lipozyme IM 20 (Mucor miehei lipase immobilized on anionic resin). Novozym 435 was found to be the most active catalyst in heptane as a solvent. A conversion of 82% with 100% selectivity of n-octyl acetate was obtained at 30 °C in 90 min using equimolar quantities of the reactants with 0.833 g l−1 of Novozym 435. Transesterification of other alcohols such as n-decanol, benzyl alcohol, cinnamyl alcohol, 2-ethyl-1-hexanol, 1-phenyl ethyl alcohol, and 2-phenyl ethyl alcohol was also studied with vinyl acetate. The analysis of the initial rate data and progress curve data showed that the reaction obeys the ternary complex bi–bi mechanism with inhibition by n-octanol. The experimental and theoretical values matched very well.

The order of transesterification reactivity of vinyl acetate with various alcohols in presence of Novozym 435 under otherwise identical conditions at 30 °C was found to be as follows:

n-octanol>n-decanol>benzylalcohol>cinnamylalcohol>2-ethyl-1-hexanol>2-phenylethylalcohol>1-phenylethylalcohol.
  相似文献   
74.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   
75.
It has recently been shown that fatty acid vinyl esters serve as effective acylating agents for the synthesis of esters by enzymatic transesterification in high yields. To enhance the usefulness of this system at low temperatures, we have searched for the gene coding for a cold-active lipolytic enzyme with a substrate preference for fatty acid vinyl esters and obtained it from the genomic library of Acinetobacter sp. strain no. 6, a psychrotroph isolated from Siberian soil. The gene (termed aelh, 777 bp) encoded a protein of 258 amino acids, and sequence analysis revealed that the enzyme shows a high sequence similarity to β-ketoadipate enol-lactone hydrolase involved in the β-ketoadipate pathway for the bacterial catabolism of benzoic acid. The aelh gene was expressed in the E. coli C600 cells under the control of lac promoter and the expression product was purified to homogeneity and characterized. It was a monomeric esterase preferentially catalyzing the hydrolysis of enol esters, such as fatty acid vinyl esters with a short-chain acyl group. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, a specific inhibitor for serine hydrolases. The enzyme could also catalyze transesterification, for example, between vinyl propionate and propanol yielding propyl propionate at 4 °C. These results indicate the usefulness of an esterase (termed AELH) for the enzymatic synthesis of esters by transesterification using vinyl esters as an acyl donor.  相似文献   
76.
Vinyl monomers with phenol and benzoic acid as pendant groups were synthesized, and their antimicrobial activities were examined on equal weight basis using the halo zone test. For both bacteria and fungi, the halo zone diameter decreased in the order of p-hydroxyphenyl acrylate (M2)>allyl p-hydroxyphenyl acetate (M1)≈p-2-propenoxyphenol (M3). Polymerization of the monomers decreased their antimicrobial activity significantly, but the order of the halo zone diameter for the polymers was the same as that of the corresponding monomers. Glassy polymers exhibited low antimicrobial activity when compounded with low molecular weight antimicrobial agents due to the extremely slow diffusion. Antimicrobial polymers could find a successful application such as coating on glassy polymers, in spite of the lower antimicrobial activity compared to the respective monomers.  相似文献   
77.
We have studied the enzymatic hydrolysis of solutions and emulsions of vinyl propionate, vinyl butyrate and tripropionin by lipases of various origin and specificity. Kinetic studies of the hydrolysis of short-chain substrates by microbial triacylglycerol lipases from Rhizopus oryzae, Mucor miehei, Candida rugosa, Candida antarctica A and by (phospho)lipase from guinea-pig pancreas show that these lipolytic enzymes follow the Michaelis–Menten model. Surprisingly, the activity against solutions of tripropionin and vinyl esters ranges from 70% to 90% of that determined against emulsions. In contrast, a non-hyperbolic (sigmoidal) dependence of enzyme activity on ester concentration is found with human pancreatic lipase, triacylglycerol lipase from Humicola lanuginosa (Thermomyces lanuginosa) and partial acylglycerol lipase from Penicillium camembertii and the same substrates. In all cases, no abrupt jump in activity (interfacial activation) is observed at substrate concentration corresponding to the solubility limit of the esters. Maximal lipolytic activity is always obtained in the presence of emulsified ester. Despite progress in the understanding of structure–function of lipases, interpretation of the mode of action of lipases active against solutions of short-chain substrates remains difficult. Actually, it is not known whether these enzymes, which possess a lid structure, are in open or/and closed conformation in the bulk phase and whether the opening of the lid that gives access to the catalytic triad is triggered by interaction of the enzyme molecule with monomeric substrates or/and multimolecular aggregates (micelles) both present in the bulk phase. From the comparison of the behaviour of lipases used in this study which, in some cases, follow the Michaelis–Menten model and, in others, deviate from classical kinetics, it appears that the activity of classical lipases against soluble short-chain vinyl esters and tripropionin depends not only on specific interaction with single substrate molecules at the catalytic site of the enzyme but also on physico-chemical parameters related to the state of association of the substrate dispersed in the aqueous phase. It is assumed that the interaction of lipase with soluble multimolecular aggregates of tripropionin or short-chain vinyl esters or the formation of enzyme–substrate mixed micelles with ester bound to lipase, might represent a crucial step that triggers the structural transition to the open enzyme conformation by displacement of the lid.  相似文献   
78.
We developed a new technique for culture study that successfully recovers fungi from drug-treated skin tissues, in which tissue specimens were homogenized, dialyzed against water, digested with trypsin, and then washed with PBS, to eliminate the drug that remaining in the skin tissue specimens. With this modified culture method, we reevaluated the efficacy of KP-103, neticonazole, and lanoconazole in a guinea pig interdigital tinea pedis model. Guinea pigs with tinea pedis were topically treated with a 1% solution of KP-103 or a reference drug once a day for 10 consecutive days. Five days after the last treatment, left and right feet were subjected to culture study by the conventional and modified recovery culture methods, respectively. One hundred percent (20/20) of lanoconazole-treated feet were judged as culture-negative by the conventional culture method, but 85% (17/20) of the feet were shown to be culture-positive when the modified recovery culture method was used. On the other hand, KP-103 achieved high rates of culture-negative rates, 95% (19/20) and 85% (17/20), in both conventional and modified culture methods, respectively. Furthermore, on day-30 posttreatment, KP-103 sterilized 14 of the 20 infected feet, whereas neticonazole and lanoconazole were not effective even in reducing fungal burden. KP-103 proved to be highly effective in achieving mycological cure and preventing relapse against tinea pedis presumably because of its good bioavailability in the skin based on its low keratin-affinity, along with its potent antifungal activity.  相似文献   
79.
The structure and conformational stability of vinyl selenonyl fluoride, chloride and bromide CH2=CH–SeO2X (X is F, Cl and Br) were investigated using density functional B3LYP/6-311+G** and ab initio MP2/6-311+G** calculations. From the calculations the molecules were predicted to exist only in the non-planar gauche conformation with the vinyl C=C group almost eclipsing one of the selenonyl Se=O bonds as a result of conjugation between the two moieties. Single-minimum potential scans were calculated at the DFT level for the molecules. The vibrational frequencies were computed using B3LYP/6-311+G**. Normal coordinate calculations were then carried out and potential energy distributions were calculated for the three molecules in the gauche conformation.Figure Potential function for the asymmetric torsion in vinyl selenonyl fluoride (dotted line), chloride (dashed line) and bromide (solid line) as determined at the DFT-B3LYP/6-311+G** level  相似文献   
80.
The 3,N(4)-ethenocytosine (epsilon C) residue might have biological role in vivo since it is recognized and efficiently excised in vitro by the E. coli mismatch-specific uracil-DNA glycosylase (MUG) and the human thymine-DNA glycosylase (hTDG). In the present work we have generated mug defective mutant of E. coli by insertion of a kanamycin cassette to assess the role of MUG in vivo. We show that human TDG complements the enzymatic activity of MUG when expressed in a mug mutant. The epsilon C-DNA glycosylase defective strain did not exhibit spontaneous mutator phenotype and did not show unusual sensitivity to any of the following DNA damaging treatments: methylmethanesulfonate, N-methyl-N'-nitro-N-nitrosoguanidine, ultraviolet light, H(2)O(2), paraquat. However, plasmid DNA damaged by 2-chloroacetaldehyde treatment in vitro was inactivated at a greater rate in a mug mutant than in wild-type host, suggesting that MUG is required for the in vivo processing of the ethenobases. In addition, 2-chloroacetaldehyde treatment induces preferentially G.C --> C.G and A.T --> T.A transversions in mug mutant. Comparison of the mutation frequencies induced by the site-specifically incorporated epsilon C residue in E. coli wild-type versus mug indicates that MUG repairs more than 80% of epsilon C residues in vivo. Furthermore, the results show that nucleotide excision repair and recombination are not involved in the processing of epsilon C in E. coli. Based on the mutagenesis data we suggest that epsilon C may be less toxic and less mutagenic than expected. The increased spontaneous mutation rate for G.C --> A.T transition in the ung mug double mutant as compared to the single ung mutant suggest that MUG may be a back-up repair enzyme to the classic uracil-DNA glycosylase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号