首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7328篇
  免费   644篇
  国内免费   231篇
  8203篇
  2024年   28篇
  2023年   145篇
  2022年   202篇
  2021年   247篇
  2020年   301篇
  2019年   398篇
  2018年   328篇
  2017年   220篇
  2016年   221篇
  2015年   251篇
  2014年   385篇
  2013年   520篇
  2012年   251篇
  2011年   340篇
  2010年   289篇
  2009年   309篇
  2008年   370篇
  2007年   370篇
  2006年   321篇
  2005年   304篇
  2004年   269篇
  2003年   238篇
  2002年   226篇
  2001年   154篇
  2000年   122篇
  1999年   135篇
  1998年   102篇
  1997年   107篇
  1996年   99篇
  1995年   70篇
  1994年   67篇
  1993年   64篇
  1992年   61篇
  1991年   33篇
  1990年   43篇
  1989年   51篇
  1988年   45篇
  1987年   30篇
  1986年   29篇
  1985年   52篇
  1984年   80篇
  1983年   71篇
  1982年   89篇
  1981年   55篇
  1980年   41篇
  1979年   29篇
  1978年   14篇
  1977年   4篇
  1976年   8篇
  1973年   5篇
排序方式: 共有8203条查询结果,搜索用时 10 毫秒
101.
The aim of this study was to evaluate the use of mono and mixed lactic acid bacteria (LAB) cultures to determine suitable LAB combinations for a type II sourdough system. In this context, previously isolated sourdough LAB strains with antimicrobial activity, which included Lactobacillus plantarum PFC22, Lactobacillus brevis PFC31, Pediococcus acidilactici PFC38, and Lactobacillus sanfranciscensis PFC80, were used as mono or mixed culture combinations in a fermentation system to produce type II sourdough, and subsequently in bread dough production. Compared to the monoculture fermentation of dough, the use of mixed cultures shortened the adaptation period by half. In addition, the use of mixed cultures ensured higher microbial viability, and enhanced the fruity flavor during bread dough production. It was determined that the combination of L. plantarum PFC22 + P. acidilactici PFC38 + L. sanfranciscensis PFC80 is a promising culture mixture that can be used in the production of type II sourdough systems, and that may also contribute to an increase in metabolic activity during bread production process.  相似文献   
102.
Solid phase technique on p-methylbenzhydrylamine resin wasused for the synthesis of eight analogs of oxytocin and 8-D-homoarginine vasopressin with the non-coded amino acids L- or D-2,3,4,5,6-pentamethylphenylalanine and L- or D-4-phenylphenylalanine in position 2. The preparation of theabove mentioned non-coded amino acids is described as well.All eight analogs were found to be potent inhibitors ofoxytocin activity in the uterotonic in vitro test in theabsence of Mg2+ ions. In the uterotonic test invitro in the presence of Mg2+ and in the test invivo, their potency is strongly decreased or completelyabolished. The substances are also weak pressor inhibitors.The L or D configuration does not seem to influence theactivity significantly.  相似文献   
103.
Global climate change can significantly influence oceanic phytoplankton dynamics, and thus biogeochemical cycles and marine food webs. However, associative explanations based on the correlation between chlorophyll‐a concentration (Chl‐a) and climatic indices is inadequate to describe the mechanism of the connection between climate change, large‐scale atmospheric dynamics, and phytoplankton variability. Here, by analyzing multiple satellite observations of Chl‐a and atmospheric conditions from National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis datasets, we show that high‐latitude atmospheric blocking events over Alaska are the primary drivers of the recent decline of Chl‐a in the eastern North Pacific transition zone. These blocking events were associated with the persistence of large‐scale atmosphere pressure fields that decreased westerly winds and southward Ekman transport over the subarctic ocean gyre. Reduced southward Ekman transport leads to reductions in nutrient availability to phytoplankton in the transition zone. The findings describe a previously unidentified climatic factor that contributed to the recent decline of phytoplankton in this region and propose a mechanism of the top‐down teleconnection between the high‐latitude atmospheric circulation anomalies and the subtropical oceanic primary productivity. The results also highlight the importance of understanding teleconnection among atmosphere–ocean interactions as a means to anticipate future climate change impacts on oceanic primary production.  相似文献   
104.
Although amyloid fibrils and amorphous aggregates are two types of aggregates formed by denatured proteins, their relationship currently remains unclear. We used β2-microglobulin (β2m), a protein responsible for dialysis-related amyloidosis, to clarify the mechanism by which proteins form either amyloid fibrils or amorphous aggregates. When ultrasonication was used to accelerate the spontaneous fibrillation of β2m at pH 2.0, the effects observed depended on ultrasonic power; although stronger ultrasonic power effectively accelerated fibrillation, excessively strong ultrasonic power decreased the amount of fibrils formed, as monitored by thioflavin T fluorescence. An analysis of the products formed indicated that excessively strong ultrasonic power generated fibrillar aggregates that retained β-structures but without high efficiency as seeds. On the other hand, when the spontaneous fibrillation of β2m was induced at higher concentrations of NaCl at pH 2.0 with stirring, amorphous aggregates became more dominant than amyloid fibrils. These apparent complexities in fibrillation were explained comprehensively by a competitive mechanism in which supersaturation-limited reactions competed with supersaturation-unlimited reactions. We link the kinetics of protein aggregation and a conformational phase diagram, in which supersaturation played important roles.  相似文献   
105.
Absolutes isolated from Viola odorata leaves, valuable materials for the flavor and fragrance industry, were studied. Violets are mainly cultivated in France and Egypt and extracted locally. The absolutes of the two origins showed different olfactory profiles both in top and heart notes, as evidenced by sensory analysis. The aims of this study were i) to characterize the volatile compounds, ii) to determine the odorant‐active ones, and iii) to identify some markers of the plant origin. Two complementary analytical methods were used for these purposes, i.e., headspace solid‐phase microextraction (HS‐SPME) using different fiber coatings followed by GC/MS analysis and gas chromatography – olfactometry/mass spectrometry (GC‐O/MS) applied to violet leaf extracts. From a total of 70 identified compounds, 61 have never been reported so far for this species, 17 compounds were characterized by both techniques (with seven among them known from the literature), 23 compounds were solely identified by HS‐SPME GC/MS (among them only two being already mentioned as components of violet absolutes in the literature), and, finally, 30 compounds were only identified by GC‐O/MS. According to the HS‐SPME GC/MS analyses, ethyl hexanoate and (2E,6Z)‐nona‐2,6‐dienol were specific volatile compounds of the sample with French origin, while (E,E)‐hepta‐2,4‐dienal, hexanoic acid, limonene, tridecane, and eugenol were specific of the samples with Egyptian origin. Additional compounds that were not detected by HS‐SPME GC/MS analysis were revealed by GC‐O analyses, some of them being markers of origin. Pent‐1‐en‐3‐ol, 3‐methylbut‐2‐enal, 2‐methoxy‐3‐(1‐methylethyl)pyrazine, 4‐ethylbenzaldehyde, β‐phenethyl formate, and 2‐methoxy‐3‐(2‐methylpropyl)pyrazine revealed to be odorant markers of the French sample, whereas cis‐rose oxide, trans‐rose oxide, and 3,5,5‐trimethylcyclohex‐2‐enone were odorant markers of the Egyptian samples.  相似文献   
106.
Compared to conjugated polymers, small‐molecule organic semiconductors present negligible batch‐to‐batch variations, but presently provide comparatively low power conversion efficiencies (PCEs) in small‐molecular organic solar cells (SM‐OSCs), mainly due to suboptimal nanomorphology. Achieving precise control of the nanomorphology remains challenging. Here, two new small‐molecular donors H13 and H14 , created by fluorine and chlorine substitution of the original donor molecule H11 , are presented that exhibit a similar or higher degree of crystallinity/aggregation and improved open‐circuit voltage with IDIC‐4F as acceptor. Due to kinetic and thermodynamic reasons, H13 ‐based blend films possess relatively unfavorable molecular packing and morphology. In contrast, annealed H14 ‐based blends exhibit favorable characteristics, i.e., the highest degree of aggregation with the smallest paracrystalline π–π distortions and a nanomorphology with relatively pure domains, all of which enable generating and collecting charges more efficiently. As a result, blends with H13 give a similar PCE (10.3%) as those made with H11 (10.4%), while annealed H14 ‐based SM‐OSCs have a significantly higher PCE (12.1%). Presently this represents the highest efficiency for SM‐OSCs using IDIC‐4F as acceptor. The results demonstrate that precise control of phase separation can be achieved by fine‐tuning the molecular structure and film formation conditions, improving PCE and providing guidance for morphology design.  相似文献   
107.
108.
Membranes made from binary mixtures of egg sphingomyelin (ESM) and cholesterol were investigated using conventional and saturation-recovery EPR observations of the 5-doxylstearic acid spin label (5-SASL). The effects of cholesterol on membrane order and the oxygen transport parameter (bimolecular collision rate of molecular oxygen with the nitroxide spin label) were monitored at the depth of the fifth carbon in fluid- and gel-phase ESM membranes. The saturation-recovery EPR discrimination by oxygen transport (DOT) method allowed the discrimination of the liquid-ordered (l o), liquid-disordered (l d), and solid-ordered (s o) phases because the bimolecular collision rates of the molecular oxygen with the nitroxide spin label differ in these phases. Additionally, oxygen collision rates (the oxygen transport parameter) were obtained in coexisting phases without the need for their separation, which provides information about the internal dynamics of each phase. The addition of cholesterol causes a dramatic decrease in the oxygen transport parameter around the nitroxide moiety of 5-SASL in the l o phase, which at 50 mol% cholesterol becomes ∼5 times smaller than in the pure ESM membrane in the l d phase, and ∼2 times smaller than in the pure ESM membrane in the s o phase. The overall change in the oxygen transport parameter is as large as ∼20-fold. Conventional EPR spectra show that 5-SASL is maximally immobilized at the phase boundary between regions with coexisting l d and l o phases or s o and l o phases and the region with a single l o phase. The obtained results all owed for the construction of a phase diagram for the ESM-cholesterol membrane.  相似文献   
109.
Massive Ca(2+) accumulation in mitochondria, plus the stimulating effect of an inducing agent, i.e., oxidative stress, induces the so-called permeability transition, which is characterized by the opening of a nonspecific pore. This work was aimed at studying the influence of thyroid hormone on the opening of such a nonspecific pore in kidney mitochondria, as induced by an oxidative stress. To meet this objective, membrane permeability transition was examined in mitochondria isolated from kidney of euthyroid and hypothyroid rats, after a period of ischemia/reperfusion. It was found that mitochondria from hypothyroid rats were able to retain accumulated Ca(2+) to sustain a transmembrane potential after Ca(2+) addition, as well as to maintain matrix NAD(+) and membrane cytochrome c content. The protective effect of hypothyroidism was clearly opposed to that occurring in ischemic reperfused mitochondria from euthyroid rats. Our findings demonstrate that these mitochondria were unable to preserve selective membrane permeability, except when cyclosporin A was added. It is proposed that the protection is conferred by the low content of cardiolipin found in the inner membrane. This phospholipid is required to switch adenine nucleotide translocase from specific carrier to a non-specific pore.  相似文献   
110.
Although nitric oxide (NO) was identified more than 150 years ago and its effects were clinically tested in the form of nitroglycerine, it was not until the decades of 1970-1990 that it was described as a gaseous signal transducer. Since then, a canonical pathway linked to cyclic GMP (cGMP) as its quintessential effector has been established, but other modes of action have emerged and are now part of the common body of knowledge within the field. Classical (or canonical) signaling involves the selective activation of soluble guanylate cyclase, the generation of cGMP, and the activation of specific kinases (cGMP-dependent protein kinases) by this cyclic nucleotide. Nonclassical signaling alludes to the formation of NO-induced posttranslational modifications (PTMs), especially S-nitrosylation, S-glutathionylation, and tyrosine nitration. These PTMs are governed by specific biochemical mechanisms as well as by enzymatic systems. In addition, a less classical but equally important pathway is related to the interaction between NO and mitochondrial cytochrome c oxidase, which might have important implications for cell respiration and intermediary metabolism. Cross talk trespassing these necessarily artificial conceptual boundaries is progressively being identified and hence an integrated systems biology approach to the comprehension of NO function will probably emerge in the near future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号