首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2652篇
  免费   132篇
  国内免费   52篇
  2023年   64篇
  2022年   58篇
  2021年   88篇
  2020年   58篇
  2019年   75篇
  2018年   64篇
  2017年   65篇
  2016年   36篇
  2015年   67篇
  2014年   88篇
  2013年   125篇
  2012年   89篇
  2011年   86篇
  2010年   71篇
  2009年   100篇
  2008年   117篇
  2007年   126篇
  2006年   121篇
  2005年   84篇
  2004年   114篇
  2003年   86篇
  2002年   90篇
  2001年   64篇
  2000年   66篇
  1999年   63篇
  1998年   56篇
  1997年   48篇
  1996年   56篇
  1995年   58篇
  1994年   52篇
  1993年   44篇
  1992年   37篇
  1991年   49篇
  1990年   43篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   29篇
  1985年   22篇
  1984年   23篇
  1982年   22篇
  1981年   21篇
  1980年   14篇
  1979年   13篇
  1978年   17篇
  1977年   13篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有2836条查询结果,搜索用时 15 毫秒
141.
142.
摘要 目的:探讨和总结使用网袋强化椎体成形术在骨质疏松椎体骨折围手术期的注意事项及相关对策。方法:回顾性分析2017年6月到2020年6月3年时间内,使用网袋强化椎体成形术治疗骨质疏松性椎体骨折患者共计112例。统计和比较患者在围手术期的各项指标,分析穿刺失败的原因及相关危险因素。结果:112例患者共涉及138个椎体。其中一期穿刺失败率(骨水泥分布不佳)为47个,占34.0%。骨水泥注入3 mL以下者为19个,占13.8%。骨水泥渗漏为36个,占26.1%。所有患者在术后3天及3月复查, VAS评分和ODI评分较前均有显著改善(P<0.05)。所有患者均未出现严重并发症(P>0.05)。结论:网袋强化椎体成形术在骨质疏松性椎体骨折的治疗中是一种理想的治疗方式,但在具体过程中仍有相关的经验和教训需要整理和总结。  相似文献   
143.
Neuronal cell lines are important model systems to study mechanisms of neurodegenerative diseases. One example is the Lund Human Mesencephalic (LUHMES) cell line, which can differentiate into dopaminergic‐like neurons and is frequently used to study mechanisms of Parkinson's disease and neurotoxicity. Neuronal differentiation of LUHMES cells is commonly verified with selected neuronal markers, but little is known about the proteome‐wide protein abundance changes during differentiation. Using mass spectrometry and label‐free quantification (LFQ), the proteome of differentiated and undifferentiated LUHMES cells and of primary murine midbrain neurons are compared. Neuronal differentiation induced substantial changes of the LUHMES cell proteome, with proliferation‐related proteins being strongly down‐regulated and neuronal and dopaminergic proteins, such as L1CAM and α‐synuclein (SNCA) being up to 1,000‐fold up‐regulated. Several of these proteins, including MAPT and SYN1, may be useful as new markers for experimentally validating neuronal differentiation of LUHMES cells. Primary midbrain neurons are slightly more closely related to differentiated than to undifferentiated LUHMES cells, in particular with respect to the abundance of proteins related to neurodegeneration. In summary, the analysis demonstrates that differentiated LUHMES cells are a suitable model for studies on neurodegeneration and provides a resource of the proteome‐wide changes during neuronal differentiation. (ProteomeXchange identifier PXD020044).  相似文献   
144.
Abstract

We studied the interactions between apoptosis regulator proteins (Bcl-2, p53 and caspase-9) and neuronal nitric oxide in vasopressinergic magnocellular centers of the hypothalamus using neuronal nitric oxide synthase (nNOS) gene knockout mice. nNOS gene deletion resulted in accumulation of Bcl-2, p53 and caspase-9 in the paraventricular (PVN) and supraoptic (SON) nuclei in controls. Dehydration increased the levels of all three apoptosis regulator proteins studied in nuclei of wild type mice. In the hypothalamus magnocellular centers of nNOS knockout mice, however, expression of Bcl-2, p53 and caspase-9 was unchanged after dehydration. The number of magnocellular neurons did not change in the SON and PVN of nNOS deficient mice compared to wild type, and after dehydration, cell death was not observed in either nucleus of wild type or knockout mice despite activation of apoptosis regulator protein expression. Thus, we demonstrated that gene disruption of nNOS prevents activation of Bcl-2, p53 and caspase-9 expression during water deprivation, and that nNOS deficiency did not affect survival of magnocellular neurons of the hypothalamus.  相似文献   
145.
An exact analytical solution of equations describing slow axonal transport of cytoskeletal elements (CEs) injected in an axon is presented. The equations modelling slow axonal transport are based on the stop-and-go hypothesis. The simplest model implementing this hypothesis postulates that CEs switch between pausing and running kinetic states, and that the probabilities of CE transition between these two states are described by first-order rate constants. It is assumed that initially CEs are injected such that they form a uniform pulse of a given width. All injected CEs are initially attributed to the pausing state. It is shown that within 30 s kinetic processes redistribute CEs between pausing and running states; after that the process occurs under quasi-equilibrium conditions. The parameter accessible to experiments is the total concentration of CEs (pausing plus running). As the initial rectangular-shaped pulse moves, it changes its shape to become a bell-shaped wave that spreads out as it propagates. The wave's amplitude is decreasing during the wave's propagation. It is also shown that the system forgets its initial condition, meaning that if one starts with pulses of different widths, after sometime they converge to the same bell-shaped wave.  相似文献   
146.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   
147.
《Fly》2013,7(4):200-205
Abstract

All species of animals display aggression in order to obtain resources such as territories, mates, or food. Appropriate displays of aggression rely on the correct identification of a potential competitor, an evaluation of the environmental signals, and the physiological state of the animal. With a hard-wired circuitry involving fixed numbers of neurons, neuromodulators like serotonin offer adaptive flexibility in behavioral responses without changing the “hard-wiring”. In a recent report, we combined intersectional genetics, quantitative behavioral assays and morphological analyses to identify single serotonergic neurons that modulate the escalation of aggression. We found anatomical target areas within the brain where these neurons appear to form synaptic contacts with 5HT1A receptor-expressing neurons, and then confirmed the likelihood of those connections on a functional level. In this Extra View article, we offer an extended discussion of these recent findings and elaborate on how they can link a cellular and functional mapping of an aggression-regulating circuit at a single-cell resolution level.  相似文献   
148.
Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal components STIM1 and ORAI1, has been particularly characterized in immune cells. In the nervous system, all STIM and ORAI homologs are expressed. This review summarizes current knowledge on distribution and function of STIM and ORAI proteins in central neurons and glial cells, i.e. astrocytes and microglia. STIM2 is required for SOCE in hippocampal synapses and cortical neurons, whereas STIM1 controls calcium store replenishment in cerebellar Purkinje neurons. In microglia, STIM1, STIM2, and ORAI1 regulate migration and phagocytosis. The isoforms ORAI2 and ORAI3 are candidates for SOCE channels in neurons and astrocytes, respectively. Due to the role of SOCE in neuronal and glial calcium homeostasis, dysfunction of STIM and ORAI proteins may have consequences for the development of neurodegenerative disorders, such as Alzheimer's disease.  相似文献   
149.
Detection and interpretation of olfactory cues are critical for the survival of many organisms. Remarkably, species across phyla have strikingly similar olfactory systems suggesting that the biological approach to chemical sensing has been optimized over evolutionary time1. In the insect olfactory system, odorants are transduced by olfactory receptor neurons (ORN) in the antenna, which convert chemical stimuli into trains of action potentials. Sensory input from the ORNs is then relayed to the antennal lobe (AL; a structure analogous to the vertebrate olfactory bulb). In the AL, neural representations for odors take the form of spatiotemporal firing patterns distributed across ensembles of principal neurons (PNs; also referred to as projection neurons)2,3. The AL output is subsequently processed by Kenyon cells (KCs) in the downstream mushroom body (MB), a structure associated with olfactory memory and learning4,5. Here, we present electrophysiological recording techniques to monitor odor-evoked neural responses in these olfactory circuits.First, we present a single sensillum recording method to study odor-evoked responses at the level of populations of ORNs6,7. We discuss the use of saline filled sharpened glass pipettes as electrodes to extracellularly monitor ORN responses. Next, we present a method to extracellularly monitor PN responses using a commercial 16-channel electrode3. A similar approach using a custom-made 8-channel twisted wire tetrode is demonstrated for Kenyon cell recordings8. We provide details of our experimental setup and present representative recording traces for each of these techniques.  相似文献   
150.
The enteric nervous system is a vast network of neurons and glia running the length of the gastrointestinal tract that functionally controls gastrointestinal motility. A procedure for the isolation and culture of a mixed population of neurons and glia from the myenteric plexus is described. The primary cultures can be maintained for over 7 days, with connections developing among the neurons and glia. The longitudinal muscle strip with the attached myenteric plexus is stripped from the underlying circular muscle of the mouse ileum or colon and subjected to enzymatic digestion. In sterile conditions, the isolated neuronal and glia population are preserved within the pellet following centrifugation and plated on coverslips. Within 24-48 hr, neurite outgrowth occurs and neurons can be identified by pan-neuronal markers. After two days in culture, isolated neurons fire action potentials as observed by patch clamp studies. Furthermore, enteric glia can also be identified by GFAP staining. A network of neurons and glia in close apposition forms within 5 - 7 days. Enteric neurons can be individually and directly studied using methods such as immunohistochemistry, electrophysiology, calcium imaging, and single-cell PCR. Furthermore, this procedure can be performed in genetically modified animals. This methodology is simple to perform and inexpensive. Overall, this protocol exposes the components of the enteric nervous system in an easily manipulated manner so that we may better discover the functionality of the ENS in normal and disease states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号