首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22470篇
  免费   1802篇
  国内免费   1710篇
  2024年   96篇
  2023年   531篇
  2022年   642篇
  2021年   899篇
  2020年   935篇
  2019年   1100篇
  2018年   940篇
  2017年   857篇
  2016年   866篇
  2015年   1109篇
  2014年   1349篇
  2013年   2082篇
  2012年   931篇
  2011年   1075篇
  2010年   751篇
  2009年   1224篇
  2008年   1262篇
  2007年   1223篇
  2006年   1126篇
  2005年   903篇
  2004年   843篇
  2003年   703篇
  2002年   569篇
  2001年   474篇
  2000年   407篇
  1999年   370篇
  1998年   349篇
  1997年   355篇
  1996年   269篇
  1995年   223篇
  1994年   202篇
  1993年   197篇
  1992年   166篇
  1991年   148篇
  1990年   122篇
  1989年   102篇
  1988年   92篇
  1987年   78篇
  1986年   67篇
  1985年   75篇
  1984年   53篇
  1983年   33篇
  1982年   58篇
  1981年   41篇
  1980年   30篇
  1979年   20篇
  1978年   11篇
  1977年   8篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Traditional Mediterranean diet includes the halophyte Crithmum maritimum L. (Apiaceae) which can be found in the coastline of the Balearic Islands but also inland. Both areas differed in the environmental conditions, mainly in salinity which can affect the oxidative status of this species. The aim was to evaluate the antioxidant enzyme activities, polyphenols and the lipid peroxidation in leaves of wild C. maritimum growing in a natural coastal area influenced by marine salinity and an inland area without marine influence. The activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase as well as polyphenol and reduced glutathione content were significantly higher in the samples from coastline population, whereas no significant differences were found in glutathione reductase activity and in malondialdehyde levels. The production of H2O2 was also significantly higher in the population from coastline. In conclusion, C. maritimum adapt their antioxidant defense machinery to the different salinity conditions, avoiding the instauration of oxidative stress.  相似文献   
993.
DNA replication stress, defined as the slowing or stalling of replication forks, is considered an emerging hallmark of cancer and a major contributor to genomic instability associated with tumorigenesis (Macheret and Halazonetis, 2015). Recent advances have been made in attempting to target DNA repair factors involved in alleviating replication stress to potentiate genotoxic treatments. Various inhibitors of ATR and Chk1, the two major kinases involved in the intra-S-phase checkpoint, are currently in Phase I and II clinical trials [2]. In addition, currently approved inhibitors of Poly-ADP Ribose Polymerase (PARP) show synthetic lethality in cells that lack double-strand break repair such as in BRCA1/2 deficient tumors [3]. These drugs have also been shown to exacerbate replication stress by creating a DNA-protein crosslink, termed PARP ‘trapping’, and this is now thought to contribute to the therapeutic efficacy. Translesion synthesis (TLS) is a mechanism whereby special repair DNA polymerases accommodate and tolerate various DNA lesions to allow for damage bypass and continuation of DNA replication (Yang and Gao, 2018). This class of proteins is best characterized by the Y-family, encompassing DNA polymerases (Pols) Kappa, Eta, Iota, and Rev1. While best studied for their ability to bypass physical lesions on the DNA, there is accumulating evidence for these proteins in coping with various natural replication fork barriers and alleviating replication stress. In this mini-review, we will highlight some of these recent advances, and discuss why targeting the TLS pathway may be a mechanism of enhancing cancer-associated replication stress. Exacerbation of replication stress can lead to increased genome instability, which can be toxic to cancer cells and represent a therapeutic vulnerability.  相似文献   
994.
In‐depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label‐free mass spectrometry. Qualitative analysis of protein identification data from high‐pH/reversed‐phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low‐molecular‐weight and membrane‐associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH‐MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii’s universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.  相似文献   
995.
Obesity is emerging as a potential risk factor for male infertility. It is a multifactorial disorder with primarily genetic and/or environmental factors. Our earlier studies have shown differential effects of genetically inherited-and high fat diet induced-obesity on hormones, fertility and spermatogenesis in adult male rats. In the present study, we assessed the effect of high fat diet induced – and genetically inherited – obesity on the underlying molecular mechanisms affecting spermatogenesis. The expression of hormone receptors, cytokines and markers of oxidative stress as well as cell cycle mediators were affected in both the obese groups, however, the changes were different in the two groups. This could be due to difference in fat distribution between the two types of obese groups. Altered expression of hormone receptors, cytokines, cell cycle mediators and differential effects on oxidative stress could be the plausible reason for differential changes in germ cell population in both the groups.  相似文献   
996.
997.

Background and aims

It has been previously verified that mesenchymal stromal cells (MSCs) have a good therapeutic effect on severe acute pancreatitis (SAP) and the potential for regeneration of damaged pancreatic tissue, but the exact molecular mechanism remains unclear. In this study, we demonstrated the therapeutic effect of bone morrow MSCs (BMSCs) on SAP, probably by targeting heme oxygenase-1 (HO-1).

Methods

Six hours after SAP induction, either phosphate-buffered saline (PBS) or BMSCs were transfused into the caudal vein of rats, zinc protoporphyrin (ZnPP) was administered intraperitoneally. Pancreatic pathological scoring, serum levels of amylase and inflammatory factors, as well as levels of reactive oxygen species (ROS), malondialdehyde (MDA) and myeloperoxidase (MPO), superoxide dismutase (SOD) and catalase (CAT) activity in the pancreas were evaluated.

Results

Our data showed that BMSCs significantly reduce inflammation and oxidative stress, reduce apoptosis and promote angiogenesis of damaged pancreas. Moreover, BMSCs increased the level of HO-1 in the serum and pancreatic tissue in rats with SAP. In addition, the protective effect of BMSCs was partially neutralized by the HO-1 activity inhibitor ZnPP, suggesting a key role of HO-1 in the therapeutic effect of BMSCs on SAP.

Conclusions

BMSCs ameliorated SAP, probably by inducing expression of HO-1, which can exert anti-inflammatory and anti-oxidant effects, reduce apoptosis and promote angiogenesis.  相似文献   
998.
999.
1000.
Abstract

The article dwells upon identifying the effect of cadmium on the roots of beetroot. The exposure effects of various concentrations of cadmium were studied at different levels of the plant organization (tissue pieces, organelles, membrane vesicles). The effect was noted only at a concentration of 100?μm. The negative effect of cadmium on the roots tissues of beetroot appeared with an increase in permeability and a decrease in the stability of cell membranes due to a change in the composition of fatty acids of membrane lipids and an increase in oxidation processes. The effect of cadmium in model experiments on the activity of the proton pumps of the vacuolar membrane has been evaluated. The pumps provide for the transport of heavy metals into the vacuole, which is one of the effective mechanisms for phytoremediation. The influence of cadmium in model experiments on the activity of the proton pump of a vacuolar membrane was evaluated. Under the influence of cadmium, a decrease in the activity of V-ATPase was observed, while the activity of V-PPase did not change. The results obtained complement our understanding of the damaging effects that occur in plant cells under cadmium stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号