首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81762篇
  免费   3325篇
  国内免费   7442篇
  92529篇
  2023年   740篇
  2022年   1176篇
  2021年   1467篇
  2020年   1549篇
  2019年   2914篇
  2018年   1935篇
  2017年   1658篇
  2016年   2025篇
  2015年   3104篇
  2014年   4276篇
  2013年   5830篇
  2012年   3525篇
  2011年   4899篇
  2010年   3586篇
  2009年   3678篇
  2008年   3890篇
  2007年   4128篇
  2006年   3743篇
  2005年   3283篇
  2004年   2709篇
  2003年   2404篇
  2002年   2112篇
  2001年   1699篇
  2000年   1497篇
  1999年   1503篇
  1998年   1399篇
  1997年   1198篇
  1996年   1113篇
  1995年   1314篇
  1994年   1222篇
  1993年   1159篇
  1992年   1182篇
  1991年   989篇
  1990年   904篇
  1989年   849篇
  1988年   840篇
  1987年   829篇
  1986年   541篇
  1985年   957篇
  1984年   1339篇
  1983年   967篇
  1982年   1311篇
  1981年   925篇
  1980年   930篇
  1979年   881篇
  1978年   508篇
  1977年   417篇
  1976年   338篇
  1975年   263篇
  1973年   262篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The H2 uptake activity (units/mg protein) of Clostridium pasteurianum cells with methylene blue as the electron acceptor increases with cell density independent of the growth conditions. The H2 evolution activity (units/mg protein) of the same cells with reduced methyl viologen as the electron donor remains fairly constant under all growth conditions tested. Cells grown under N2-fixing conditions have the highest H2 uptake activity and were used for the purification of hydrogenase II (uptake hydrogenase). Attempts to separate hydrogenase II from hydrogenase I (bidirectional hydrogenase) by a previously published method were unreliable. We report here a new large-scale purification procedure which employs a rapid membrane filtration system to fractionate cell-free extracts. Hydrogenases I and II were easily filtered into the low-molecular-weight fraction (Mr less than 100 000), and from this, hydrogenase II was further purified to a homogeneous state. Hydrogenase II is a monomeric iron-sulfur protein of molecular weight 53 000 containing eight iron atoms and eight acid-labile sulfur atoms per molecule. Hydrogenase II catalyzes both H2 oxidation and H2 evolution at rates of 3000 and 5.9 μmol H2 consumed or evolved/min per mg protein, respectively. The purification procedure for hydrogenase II using the filtration system described greatly facilitates the large-scale purification of hydrogenase I and other enzymes from cell-free extracts of C. pasteurianum.  相似文献   
992.
D. Kleinfeld  M.Y. Okamura  G. Feher 《BBA》1984,766(1):126-140
The electron-transfer reactions and thermodynamic equilibria involving the quinone acceptor complex in bacterial reaction centers from R. sphaeroides were investigated. The reactions are described by the scheme: We found that the charge recombination pathway of D+QAQ?B proceeds via the intermediate state D+Q?AQB, the direct pathway contributing less than approx. 5% to the observed recombination rate. The method used to obtain this result was based on a comparison of the kinetics predicted for the indirect pathway (given by the product kAD-times the fraction of reaction centers in the Q?AQB state) with the observed recombination rate, kobsD+ →D. The kinetic measurements were used to obtain the pH dependence (6.1 ? pH ? 11.7) of the free energy difference between the states Q?AQB and QAQ?B. At low pH (less than 9) QAQ?B is stabilized relative to Q?AQB by 67 meV, whereas at high pH Q?AQB is energetically favored. Both Q?A and Q?B associate with a proton, with pK values of 9.8 and 11.3, respectively. The stronger interaction of the proton with Q?B provides the driving force for the forward electron transfer.  相似文献   
993.
This work aimed at the resolution of the multi-component electric potential changes induced by single-turnover flash illumination of Photosystem-I-enriched subchloroplast vesicles. If supplemented with ferredoxin and under carefully adjusted redox poising, these vesicles show a pronounced slow-rising and -decaying electric potential component, as monitored by endogenous and exogenous field-sensitive probes, carotenoids and oxonol VI, respectively. The fast and slow potential components can be easily discriminated without the need for computer-assisted deconvolution after selective presaturation of the slow component by preillumination or a transmembrane ΔpH, after selective suppression of the slow component by low valinomycin or uncoupler concentrations or in the absence of ferredoxin. The slow electric potential component, as compared to the fast one, is relatively sensitive to low concentrations of ionophores and uncouplers, detergent, ageing and lower temperatures (4–12°C), is associated with electrogenic proton displacements and is interpreted to respond to a field that is more located on the membrane-bulk interface. Temperature effects show transition temperatures around 20°C for both the rise and decay of the slow potential component. The results provide further evidence that the carotenoids and oxonol VI sense the same (slow) electric field, but may be differently located in the thylakoid membrane.  相似文献   
994.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   
995.
Giuseppe Paradies 《BBA》1984,766(2):446-450
The binding of α-cyanocinnamate to rat-heart mitochondrial membrane was investigated using α-cyano[14C]cinnamate. The binding was correlated to the inhibition of pyruvate transport. The results obtained demonstrate that both these functions reach saturation at the same titre of the inhibitor. Quantitative parameters of α-cyano[14C]cinnamate binding have been determined. The binding can be prevented by pyruvate and other substrates of the carrier but not by acetate. Pyruvate decreases the affinity of α-cyanocinnamate binding, leaving the maximum number of binding unchanged. It is concluded that rat-heart mitochondria contain a specific site at which α-cyanocinnamate binds which is directly involved in the inhibition of pyruvate transport.  相似文献   
996.
The amino-terminal sequences have been determined by Edman degradation for the reaction center polypeptides from a carotenoidless mutant of Rhodopseudomonas capsulata. Individual polypeptides were isolated by preparative electrophoresis and electroelution. By comparison with the sequences deduced from the DNA (Youvan, D.C., Alberti, M., Begush, H., Bylina, E.J. and Hearst, J.E. (1984) Proc. Natl. Acad. Sci. USA 81, 189–192) we conclude that the M and L subunits are processed so as to remove the amino-terminal methionine, whereas the H subunit is not processed at the amino-terminus after translation. None of the subunits is synthesized with a significant amino-terminal extension peptide.  相似文献   
997.
Electron transport, phosphorylation and internal proton concentration were measured in illuminated spinach chloroplast thylakoid membranes under a number of conditions. Regardless of the procedure used to vary these parameters, the data fit a simple chemiosmotic model. Protons from Photosystem II did not appear to be utilized differently from those derived from Photosystem I. The maximal phosphorylation efficiency (Pe2) for photophosphorylation in washed thylakoids under oxidizing conditions is likely to be 43. This value is consistent with a proton-to-electron-pair ratio of 4 for electron flow through both photosystems and a proton-to-ATP ratio of 3 for the chloroplast proton-ATPase.  相似文献   
998.
John L. Casey  Kenneth Sauer 《BBA》1984,767(1):21-28
In Photosystem II preparations at low temperature we were able to generate and trap an intermediate state between the S1 and S2 states of the Kok scheme for photosynthetic oxygen evolution. Illumination of dark-adapted, oxygen-evolving Photosystem II preparations at 140 K produces a 320-G-wide EPR signal centered near g = 4.1 when observed at 10 K. This signal is superimposed on a 5-fold larger and somewhat narrower background signal; hence, it is best observed in difference spectra. Warming of illuminated samples to 190 K in the dark results in the disappearance of the light-induced g = 4.1 feature and the appearance of the multiline EPR signal associated with the S2 state. Low-temperature illumination of samples prepared in the S2 state does not produce the g = 4.1 signal. Inhibition of oxygen evolution by incubation of PS II preparations in 0.8 M NaCl buffer or by the addition of 400 μM NH2OH prevents the formation of the g = 4.1 signal. Samples in which oxygen evolution is inhibited by replacement of Cl? with F? exhibit the g = 4.1 signal when illuminated at 140 K, but subsequent warming to 190 K neither depletes the amplitude of this signal nor produces the multiline signal. The broad signal at g = 4.1 is typical for a S = 52 spin system in a rhombic environment, suggesting the involvement of non-heme Fe in photosynthetic oxygen evolution.  相似文献   
999.
In the presence of Cl?, the severity of ammonia-induced inhibition of photosynthetic oxygen evolution is attenuated in spinach thylakoid membranes (Sandusky, P.O. and Yocum, C.F. (1983) FEBS Lett. 162, 339–343). A further examination of this phenomenon using steady-state kinetic analysis suggests that there are two sites of ammonia attack, only one of which is protected by the presence of Cl?. In the case of Tris-induced inhibition of oxygen evolution only the Cl? protected site is evident. In both cases the mechanism of Cl? protection involves the binding of Cl? in competition with the inhibitory amine. Anions (Br? and NO?3) known to reactive oxygen evolution in Cl?-depleted membranes also protect against Tris-induced inhibition, and reactivation of Cl?-depleted membranes by Cl? is competitively inhibited by ammonia. Inactivation of the oxygen-evolving complex by NH2OH is impeded by Cl?, whereas Cl? does not affect the inhibition induced by so-called ADRY reagents. We propose that Cl? functions in the oxygen-evolving complex as a ligand bridging manganese atoms to mediate electron transfer. This model accounts both for the well known Cl? requirement of oxygen evolution, and for the inhibitory effects of amines on this reaction.  相似文献   
1000.
Thomas C. Strekas 《BBA》1984,765(2):133-137
Resonance Raman spectroscopy has been used to obtain complete spectra of each individual cytochrome type — a, b and c — in the reduced state within membrane vesicle preparations from two species of obligately alkalophilic bacteria: Bacillus alcalophilus and Bacillus firmus RAB. The vibrational spectra, in the range 250–1700 cm?1, were obtained with tunable dye laser excitation in the wavelength range 550–600 nm tuned to resonance with the appropriate reduced alpha band maximum for the cytochrome type of interest. The spectra reveal details which serve to characterize the specific type of cytochrome as well as to confirm the similarity of the heme prosthetic group to previously well-characterized cytochromes of the the a- b- or c-type. Preliminary evidence in support of heterogeneity of b-type, and possibly a-type cytochromes, or of heme-heme interaction within the membrane is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号