首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   167篇
  国内免费   26篇
  1727篇
  2024年   6篇
  2023年   19篇
  2022年   39篇
  2021年   43篇
  2020年   51篇
  2019年   43篇
  2018年   41篇
  2017年   40篇
  2016年   44篇
  2015年   56篇
  2014年   112篇
  2013年   117篇
  2012年   96篇
  2011年   103篇
  2010年   77篇
  2009年   90篇
  2008年   105篇
  2007年   111篇
  2006年   68篇
  2005年   68篇
  2004年   79篇
  2003年   53篇
  2002年   42篇
  2001年   11篇
  2000年   22篇
  1999年   30篇
  1998年   7篇
  1997年   18篇
  1996年   18篇
  1995年   14篇
  1994年   5篇
  1993年   7篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   8篇
  1988年   10篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   7篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有1727条查询结果,搜索用时 10 毫秒
31.
Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50 = 0.11–40 nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50 = 0.62–1.5 μM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10–90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (1316, 4245) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0 μM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2 h post treatment (80 mg/kg), with similar results observed upon treatment (15 mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results support the further pre-clinical development of the most active members of this structurally diverse collection of water-soluble prodrugs as promising anticancer agents functioning through a mechanism involving vascular disruption.  相似文献   
32.
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.  相似文献   
33.
34.
There is increasing evidence that epithelial-vascular interactions are essential for tissue patterning. Here we identified components of the molecular cross talk between respiratory epithelial cells and pulmonary capillaries necessary for the formation of the gas exchange surface of the lung. Selective inactivation of the Vegf-A gene in respiratory epithelium results in an almost complete absence of pulmonary capillaries, demonstrating the dependence of pulmonary capillary development on epithelium-derived Vegf-A. Deficient capillary formation in Vegf-A deficient lungs is associated with a defect in primary septae formation, a morphogenetic process critical for distal lung morphogenesis, coupled with suppression of epithelial cell proliferation and decreased hepatocyte growth factor (Hgf) expression. Lung endothelial cells express Hgf, and selective deletion of the Hgf receptor gene in respiratory epithelium phenocopies the malformation of septae, confirming the requirement for epithelial Hgf signaling in normal septae formation and suggesting that Hgf serves as an endothelium-derived factor that signals to the epithelium. Our findings support a mechanism for primary septae formation dependent on reciprocal interactions between respiratory epithelium and the underlying vasculature, establishing the dependence of pulmonary capillary development on epithelium-derived Vegf-A, and identify Hgf as a putative endothelium-derived factor that mediates the reciprocal signaling from the vasculature to the respiratory epithelium.  相似文献   
35.
Pulsatile, three-dimensional hemodynamic forces influence thrombosis, and may dictate progression of aortic dissection. Intimal flap fenestration and blood pressure are clinically relevant variables in this pathology, yet their effects on dissection hemodynamics are poorly understood. The goal of this study was to characterize these effects on flow in dissection models to better guide interventions to prevent aneurysm formation and false lumen flow. Silicone models of aortic dissection with mobile intimal flap were fabricated based on patient images and installed in a flow loop with pulsatile flow. Flow fields were acquired via 4-dimensional flow MRI, allowing for quantification and visualization of relevant fluid mechanics. Pulsatile vortices and jet-like structures were observed at fenestrations immediately past the proximal entry tear. False lumen flow reversal was significantly reduced with the addition of fenestrations, from 19.2 ± 3.3% in two-tear dissections to 4.67 ± 1.5% and 4.87 ± 1.7% with each subsequent fenestration. In contrast, increasing pressure did not cause appreciable differences in flow rates, flow reversal, and vortex formation. Increasing the number of intermediate tears decreased flow reversal as compared to two-tear dissection, which may prevent false lumen thrombosis, promoting persistent false lumen flow. Vortices were noted to result from transluminal fluid motion at distal tear sites, which may lead to degeneration of the opposing wall. Increasing pressure did not affect measured flow patterns, but may contribute to stress concentrations in the aortic wall. The functional and anatomic assessment of disease with 4D MRI may aid in stratifying patient risk in this population.  相似文献   
36.
The role of oxidative stress in diabetic vascular and neural disease   总被引:12,自引:0,他引:12  
This review will focus on the impact of hyperglycemia-induced oxidative stress in the development of diabetes-induced vascular and neural dysfunction. Oxidative stress occurs when the balance between the production of oxidation products and the ability of antioxidant mechanisms to neutralize these products is tilted in the favor of the former. The production of reactive oxygen species has been shown to be increased in patients with diabetes. The possible sources for the overproduction of reactive oxygen species is widespread and include enzymatic pathways, autoxidation of glucose and the mitochondria. Increase in oxidative stress has clearly been shown to contribute to the pathology of vascular disease not only in diabetes but also in hypertension, stroke and ischemia. Since the etiology of diabetic neuropathy is considered to have a large vascular component, prevention of oxidative stress in diabetes is considered by many investigators to be a primary defense against the development of diabetic vascular disease. Potential therapies for preventing increased oxidative stress in diabetes and the neural vasculature will be discussed.  相似文献   
37.
为了探讨血管平滑肌细胞 ( VSMC)基质金属蛋白酶 - 2 ( MMP- 2 )基因的表达调控机制 ,利用Northern印迹杂交和 MMP- 2活性酶图分析检查 b FGF、TNF- α和 IL- 1 β对 VSMC MMP- 2基因表达的影响 ,应用电泳迁移率改变实验 ( EMSA)和 CAT分析对其作用机制进行研究 .结果证实 ,3种细胞因子均能显著诱导 MMP- 2基因表达 ,其作用强度依次为 b FGF>TNF-α>IL - 1β.将 MMP-2基因 5′侧翼 - 61 9~ 1 9bp调控序列克隆进携带报告基因的重组质粒 p SV0 - CAT后 ,经转染VSMC及 CAT分析显示 ,在上述 3种细胞因子的作用下 ,该调控序列可激活 cat基因表达 ,三者促进 cat表达的活性与其诱导 VSMC表达 MMP- 2的结果相一致 ;EMSA结果显示 ,被 b FGF和TNF- α刺激的 VSMC中产生与该基因调控区序列特异结合的转录调控因子 .提示细胞因子除可激活 VSMC细胞周期调节基因表达外 ,还可通过诱导 MMP- 2表达而发挥其对细胞外基质代谢的调节作用及参与 VSMC迁移的启动过程 ;细胞因子对 VSMC MMP- 2基因表达的诱导作用是通过促进转录调控因子的合成或活化而实现的 .  相似文献   
38.
Tissue inflammation and multiple cellular responses in the compensatory enlarged plantaris (OP Plt) muscle induced by surgical ablation of synergistic muscles (soleus and gastrocnemius) were followed over 10 weeks after surgery. Contralateral surgery was performed in adult Wistar male rats. Cellular responses in muscle fibers, blood vessels and nerve fibers were analyzed by immunohistochemistry and electron microscopy. Severe muscle fiber damage and disappearance of capillaries associated with apparent tissue edema were observed in the peripheral portion of OP Plt muscles during the first week, whereas central portions were relatively preserved. Marked cell activation/proliferation was also mainly observed in peripheral portions. Similarly, activated myogenic cells were seen not only inside but also outside of muscle fibers. The former were likely satellite cells and the latter may be interstitial myogenic cells. One week after surgery, small muscle fibers, small arteries and capillaries and several branched-muscle fibers were evident in the periphery, thus indicating new muscle fiber and blood vessel formation. Proliferating cells were also detected in the nerve bundles in the Schwann cell position. These results indicate that the compensatory stimulated/enlarged muscle is a suitable model for analyzing multiple physiological cellular responses in muscle–nerve–blood vessel units under continuous stretch stimulation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
39.
The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.  相似文献   
40.
Vascular network formation is a key therapeutic event in regenerative medicine because it is essential for mitigating or ameliorating ischemic conditions implicated in various diseases and repair of tissues and organs. In this study, we induced human induced pluripotent stem cells (hiPSCs) to differentiate into heterogeneous cell populations which have abilities to form vascular vessel-like structures by recapitulating the embryonic process of vasculogenesis in vitro. These cell populations, named cardiovascular blast populations (CBPs) in this report, primarily consisted of CD31+ and CD90+ cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号