首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   8篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2013年   1篇
  2006年   3篇
  2003年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
排序方式: 共有36条查询结果,搜索用时 692 毫秒
21.
In this contribution we describe the implementation of a novel solution for image guided particle therapy, designed to ensure the maximal accuracy in patient setup. The presented system is installed in the central treatment room at Centro Nazionale di Adroterapia Oncologica (CNAO, Italy), featuring two fixed beam lines (horizontal and vertical) for proton and carbon ion therapy. Treatment geometry verification is based on robotic in-room imaging acquisitions, allowing for 2D/3D registration from double planar kV-images or 3D/3D alignment from cone beam image reconstruction. The calculated six degrees-of-freedom correction vector is transferred to the robotic patient positioning system, thus yielding automated setup error compensation. Sub-millimetre scale residual errors were measured in absolute positioning of rigid phantoms, in agreement with optical- and laser-based assessment. Sub-millimetre and sub-degree positioning accuracy was achieved when simulating setup errors with anthropomorphic head, thorax and pelvis phantoms. The in-house design and development allowed a high level of system customization, capable of replicating the clinical performance of commercially available products, as reported with preliminary clinical results in 10 patients.  相似文献   
22.
Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life.  相似文献   
23.
The effects on growth, quality and N uptake by turfgrass (Cynodon dactylon L.) during sod production of four fertiliser types applied at three application rates (100, 200 or 300 kg N ha−1 per ‘crop’) under two irrigation treatments (70% and 140% daily replacement of pan evaporation) were investigated. The fertiliser types were: water-soluble (predominately NH4NO3), control-release, pelletised poultry manure, and pelletised biosolids; and the experiment was conducted on a sandy soil in a Mediterranean-type climate. Plots were established from rhizomes, with the turfgrass harvested as sod every 16–28 weeks depending upon the time of the year. Four crops were produced during the study. Applying water-soluble and control-release fertilisers doubled shoot growth and improved turfgrass greenness by up to 10% in comparison with plots receiving pelletised poultry manure and pelletised biosolids. Nitrogen uptake into the shoots after four crops (averaged across irrigation treatments and N rates) was 497 kg N ha−1 for the water-soluble fertiliser, 402 kg N ha−1 for the control-release, 188 kg N ha−1 for the pelletised poultry manure and 237 kg N ha−1 for the pelletised biosolids. Consequently, the agronomic nitrogen-use efficiency (NAE, kg DM kg−1 N applied) of the inorganic fertilisers was approximately twice that of the organic fertilisers. Increasing irrigation from 70% to 140% replacement of pan evaporation was detrimental to turfgrass growth and N uptake for the first crop when supplied with the water-soluble fertiliser. Under the low irrigation treatment, inorganic N fertilisers applied at 200–300 kg N ha−1 were adequate for production of turfgrass sod. Section Editor: P. J. Randall  相似文献   
24.
AimTo review the recent evolution of spine SBRT with emphasis on single dose treatments.BackgroundRadiation treatment of spine metastases represents a challenging problem in clinical oncology, because of the high risk of inflicting damage to the spinal cord. While conventional fractionated radiation therapy still constitutes the most commonly used modality for palliative treatment, notwithstanding its efficacy in terms of palliation of pain, local tumor control has been approximately 60%. This limited effectiveness is due to previous lack of technology to precisely target the tumor while avoiding the radiosensitive spinal cord, which constitutes a dose-limiting barrier to tumor cure.Materials and methodsA thorough review of the available literature on spine SBRT has been carried out and critically assessed.ResultsStereotactic body radiotherapy (SBRT) emerges as an alternative, non-invasive high-precision approach, which allows escalation of tumor dose, while effectively sparing adjacent uninvolved organs at risk. Engaging technological advances, such as on-line Cone Beam Computed Tomography (CBCT), coupled with Dynamic Multi-Leaf Collimation (DMLC) and rapid intensity-modulated (IMRT) beam delivery, have promoted an interactive image-guided (IGRT) approach that precisely conforms treatment onto a defined target volume with a rapid dose fall-off to collateral non-target tissues, such as the spinal cord. Recent technological developments allow the use of the high-dose per fraction mode of hypofractionated SBRT for spinal oligometastatic cancer, even if only a few millimeters away from the tumor.ConclusionSingle-dose spine SBRT, now increasingly implemented, yields unprecedented outcomes of local tumor ablation and safety, provided that advanced technology is employed.  相似文献   
25.
26.
27.
IntroductionDeformable image registration (DIR) can play an important role in the context of adaptive radiotherapy. The AAPM Task Group 132 (TG-132) has described several quantitative measures for DIR error assessment but they can only be accurately defined when there is a ground-truth present in high-contrast regions. This work aims to set out a framework to obtain optimal results for CT-CT lung DIR in clinical setting for a commercially available system by quantifying the DIR performance in both low- and high-contrast regions.MethodsFive publicly available thorax datasets were used to assess the DIR quality. A “Ghost fiducial” method was implemented by windowing the contrast in a new feature provided by Varian Velocity v4.1. Target registration error (TRE) of the landmarks and Dice-similarity coefficient of the tumour were calculated at three different contrast settings to assess the algorithm in high- and low-contrast scenarios.ResultsFor the original unedited dataset, higher resolution DIR methods showed best performance acceptable within the recommended limit according to TG-132, when actual displacements were less than 10 mm. The relation of the actual displacement of the landmarks and TRE shows the limited capacity of the algorithm to deal with movements larger than 10 mm.ConclusionThis work found the performance of DIR methods and settings available in Varian Velocity v4.1 to be a function of contrast level as well as extent of motion. This highlights the need for multiple metrics to assess different aspects of DIR performance for various applications related to low-contrast and/or high-contrast regions.  相似文献   
28.

Aim

To describe daily displacements when using fiducial markers as surrogates for the target volume in patients with prostate cancer treated with IGRT.

Background

The higher grade of conformity achieved with the use of modern radiation technologies in prostate cancer can increase the risk of geographical miss; therefore, an associated protocol of IGRT is recommended.

Materials and methods

A single-institution, retrospective, consecutive study was designed. 128 prostate cancer patients treated with daily on-line IGRT based on 2D kV orthogonal images were included. Daily displacement of the fiducial markers was considered as the difference between the position of the patient when using skin tattoos and the position after being relocated using fiducial markers. Measures of central tendency and dispersion were used to describe fiducial displacements.

Results

The implant itself took a mean time of 15 min. We did not detect any complications derived from the implant. 4296 sets of orthogonal images were identified, 128 sets of images corresponding to treatment initiation were excluded; 91 (2.1%) sets of images were excluded from the analysis after having identified that these images contained extreme outlier values. If IGRT had not been performed 25%, 10% or 5% of the treatments would have had displacements superior to 4, 7 or 9 mm respectively in any axis.

Conclusions

Image guidance is required when using highly conformal techniques; otherwise, at least 10% of daily treatments could have significant displacements. IGRT based on fiducial markers, with 2D kV orthogonal images is a convenient and fast method for performing image guidance.  相似文献   
29.
AimTo validate and implement Monte Carlo simulation using PRIMO code as a tool for checking the credibility of measurements in LINAC initial commissioning and routine Quality Assurance (QA). Relative and absolute doses of 6 MV photon beam from TrueBeam STx Varian Linear Accelerator (LINAC) were simulated and validated with experimental measurement, Analytical Anisotropic Algorithm (AAA) calculation, and golden beam.Methods and MaterialsVarian phase-space files were imported to the PRIMO code and four blocks of jaws were simulated to determine the field size of the photon beam. Water phantom was modeled in the PRIMO code with water equivalent density. Golden beam data, experimental measurement, and AAA calculation results were imported to PRIMO code for gamma comparison.ResultsPRIMO simulations of Percentage Depth Dose (PDD) and in-plane beam profiles had good agreement with experimental measurements, AAA calculations and golden beam. However, PRIMO simulations of cross-plane beam profiles have a better agreement with AAA calculation and golden beam than the experimental measurement. Furthermore, PRIMO simulations of absolute dose agreed well with experimental results with ±0.8% uncertainty.ConclusionThe PRIMO code has good accuracy and is appropriate for use as a tool to check the credibility of beam scanning and output measurement in initial commissioning and routine QA.  相似文献   
30.
BackgroundIn order to consider potential positioning errors there are different recipes for safety-margins for CTV-to-PTV expansion. The aim of this study is to simulate the effect of positioning inaccuracy with clinically realistic patient treatment plans.MethodsFor a collective of 40 prostate patients, the isocenter was shifted back appropriately to the applied table shifts after positioning verification, simulating that no positioning correction had been performed and the treatment plans were recalculated. All the treatment fractions with the appropriate isocenter-shifts were added to yield a new plan considering two scenarios:
  • 1)Extreme scenario: summation of only shifted plans.
  • 2)Realistic scenario: consideration of the original treatment plan for the fractions with verification imaging.
Afterwards all plans were analysed and compared with each other regarding target coverage, sparing of organs at risk (OAR) and normal tissue complication probability (NTCP).ResultsDose distributions and especially DVH show a deterioration of the target-coverage caused by the positioning inaccuracy. Deviations in dose at a single point can reach values of over 10 Gy. In single cases minimum plan agreement only achieved 66% pass within 3% local dose for the realistic case. Organs at risk and NTCP analysis result in a slightly better sparing of the rectum. Measures of quality like homogeneity and conformity differ just minimally regarding the different scenarios.ConclusionPTV-coverage suffers markedly by the positioning uncertainties, the shifted plans are in large parts clinically not acceptable. Surprisingly sparing of the OAR is not negatively affected by potential positioning errors for this prostate collective.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号