首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   20篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   21篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
91.
Prolyl cis/trans isomerizations determine the rates of many protein-folding reactions, and they can serve as molecular switches and timers. The energy required to shift the prolyl cis/trans equilibrium during these processes originates from conformational reactions that are linked structurally and energetically with prolyl isomerization. We used the N2 domain of the gene-3-protein of phage fd to elucidate how such an energetic linkage develops in the course of folding. The Asp160-Pro161 bond at the tip of a β hairpin of N2 is cis in the crystal structure, but in fact, it exists as a mixture of conformers in folded N2. During refolding, about 10 kJ mol− 1 of conformational energy becomes available for a 75-fold shift of the cis/trans equilibrium constant at Pro161, from 7/93 in the unfolded to 90/10 in the folded form. We combined single- and double-mixing kinetic experiments with a mutational analysis to identify the structural origin of this proline shift energy and to elucidate the molecular path for the transfer of this energy to Pro161. It originates largely, if not entirely, from the two-stranded β sheet at the base of the Pro161 hairpin. The two strands improve their stabilizing interactions when Pro161 is cis, and this stabilization is propagated to Pro161, because the connector peptides between the β strands and Pro161 are native-like folded when Pro161 is cis. In the presence of a trans-Pro161, the connector peptides are locally unfolded, and thus, Pro161 is structurally and energetically uncoupled from the β sheet. Such interrelations between local folding and prolyl isomerization and the potential modulation by prolyl isomerases might also be used to break and reestablish slow communication pathways in proteins.  相似文献   
92.
Isothermal titration calorimetry (ITC) is a well-described technique that measures the heat released or absorbed during a chemical reaction, using it as an intrinsic probe to characterize virtually every chemical process. Nowadays, this technique is extensively applied to determine thermodynamic parameters of biomolecular binding equilibria. In addition, ITC has been demonstrated to be able of directly measuring kinetics and thermodynamic parameters (kcat, KM, ΔH) of enzymatic reactions, even though this application is still underexploited. As heat changes spontaneously occur during enzymatic catalysis, ITC does not require any modification or labeling of the system under analysis and can be performed in solution. Moreover, the method needs little amount of material. These properties make ITC an invaluable, powerful and unique tool to study enzyme kinetics in several applications, such as, for example, drug discovery.In this work an experimental ITC-based method to quantify kinetics and thermodynamics of enzymatic reactions is thoroughly described. This method is applied to determine kcat and KM of the enzymatic hydrolysis of urea by Canavalia ensiformis (jack bean) urease. Calculation of intrinsic molar enthalpy (ΔHint) of the reaction is performed. The values thus obtained are consistent with previous data reported in literature, demonstrating the reliability of the methodology.  相似文献   
93.
VP1, a putative alpha-helical antimicrobial peptide (alpha-AMP) inhibited growth of Bacillus subtilis and Escherichia coli at 500microM. The peptide induced stable surface pressure changes in monolayers formed from B. subtilis native lipid extract (circa 4.5mNm(-1)) but transient pressure changes in corresponding E. coli monolayers (circa 1.0mNm(-1)), which led to monolayer disintegration. Synthetic lipid monolayers mimetic of the extracts were used to generate compression isotherms. Thermodynamic analysis of B. subtilis isotherms indicated membrane stabilisation by VP1 (DeltaG(Mix)<0), via a mechanism dependent upon the phosphatidylglycerol to cardiolipin ratio. Corresponding analysis of E. coli isotherms indicated membrane destabilisation by the peptide (DeltaG(Mix)>0). Destabilisation correlated with PE levels present and appeared to involve a mechanism resembling those used by tilted peptides. These data emphasise that structure/function analysis of alpha-AMPs must consider not only their structural characteristics but also the lipid make-up of the target microbial membrane.  相似文献   
94.
Ramprakash J  Lang B  Schwarz FP 《Biopolymers》2008,89(11):969-979
The thermodynamics of the stacking to unstacking transitions of 24 single-stranded DNA sequences (ssDNA), 10-12 bases in length, in sodium phosphate buffer were determined from 10 to 95 degrees C, using differential scanning calorimetry (DSC). An additional 22 ssDNA sequences did not exhibit an S<-->U transition in this temperature range. The transition properties of the ssDNA sequences with 相似文献   
95.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   
96.
Thermal denaturation curves of ribonuclease-A were measured by monitoring changes in the far-UV circular dichroism (CD) spectra in the presence of different concentrations of six sugars (glucose, fructose, galactose, sucrose, raffinose and stachyose) and mixture of monosaccharide constituents of each oligosaccharide at various pH values in the range of 6.0-2.0. These measurements gave values of T(m) (midpoint of denaturation), DeltaH(m) (enthalpy change at T(m)), DeltaC(p) (constant-pressure heat capacity change) under a given solvent condition. Using these values of DeltaH(m), T(m) and DeltaC(p) in appropriate thermodynamic relations, thermodynamic parameters at 25 degrees C, namely, DeltaG(D)(o) (Gibbs energy change), DeltaH(D)(o) (enthalpy change), and DeltaS(D)(o) (entropy change) were determined at a given pH and concentration of each sugar (including its mixture of monosaccharide constituents). Our main conclusions are: (i) each sugar stabilizes the protein in terms of T(m) and DeltaG(D)(o), and this stabilization is under enthalpic control, (ii) the protein stabilization by the oligosaccharide is significantly less than that by the equimolar concentration of the constituent monosaccharides, and (iii) the stabilization by monosaccharides in a mixture is fully additive. Furthermore, measurements of the far- and near-UV CD spectra suggested that secondary and tertiary structures of protein in their native and denatured states are not perturbed on the addition of sugars.  相似文献   
97.
We showed that the alpha-CH(2) --> NH substitution in octanoyl-CoA alters the ground and transition state energies for the binding of the CoA ligands to medium-chain acyl-CoA dehydrogenase (MCAD), and such an effect is caused by a small electrostatic difference between the ligands. To ascertain the extent that the electrostatic contribution of the ligand structure and/or the enzyme site environment modulates the thermodynamics of the enzyme-ligand interaction, we undertook comparative microcalorimetric studies for the binding of 2-azaoctanoyl-CoA (alpha-CH(2) --> NH substituted octanoyl-CoA) and octenoyl-CoA to the wild-type and Glu-376 --> Gln mutant enzymes. The experimental data revealed that both enthalpy (DeltaH degrees ) and heat capacity changes (DeltaC(p) degrees ) for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -21.7 +/- 0.8 kcal/mole, DeltaC(p) degrees = -0.627 +/- 0.04 kcal/mole/K) to the wild-type MCAD were more negative than those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -17.2 +/- 1.6 kcal/mole, DeltaC(p) degrees = -0.526 +/- 0.03 kcal/mole/K). Of these, the decrease in the magnitude of DeltaC(p) degrees for the binding of 2-azaoctanoyl-CoA (vis-à-vis octenoyl-CoA) to the enzyme was unexpected, because the former ligand could be envisaged to be more polar than the latter. To our further surprise, the ligand-dependent discrimination in the above parameters was completely abolished on Glu-376 --> Gln mutation of the enzyme. Both DeltaH degrees and DeltaC(p) degrees values for the binding of 2-azaoctanoyl-CoA (DeltaH degrees (298) = -13.3 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.511 +/- 0.03 kcal/mole/K) to the E376Q mutant enzyme were found to be correspondingly identical to those obtained for the binding of octenoyl-CoA (DeltaH degrees (298) = -13.2 +/- 0.6 kcal/mole, DeltaC(p) degrees = -0.520 +/- 0.02 kcal/mole/K). However, in neither case could the experimentally determined DeltaC(p) degrees values be predicted on the basis of the changes in the water accessible surface areas of the enzyme and ligand species. Arguments are presented that the origin of the above thermodynamic differences lies in solvent reorganization and water-mediated electrostatic interaction between ligands and enzyme site groups, and such interactions are intrinsic to the molecular basis of the enzyme-ligand complementarity.  相似文献   
98.
99.
Dissolution of sucrose crystals in the anhydrous sorbitol melt   总被引:1,自引:0,他引:1  
The dissolution of a sugar (sucrose as a model) with higher melting point was studied in a molten food polyol (sorbitol as a model) with lower melting point, both in anhydrous state. A DSC and optical examination revealed the dissolution of anhydrous sucrose crystals (mp 192 degrees C) in anhydrous sorbitol (mp 99 degrees C) liquid melt. The sucrose-sorbitol crystal mixtures at the proportions of 10, 30, 60, 100 and 150 g of sucrose per 100 g of sorbitol were heat scanned in a DSC to above melting endotherm of sorbitol but well below the onset temperature of melting of sucrose at three different temperatures 110, 130 and 150 degrees C. The heat scanning modes used were with or without isothermal holding. The dissolution of sucrose in the sorbitol liquid melt was manifested by an increase in the glass transition temperature of the melt and corresponding decrease in endothermic melting enthalpy of sucrose. At given experimental conditions, as high as 25 and 85% of sucrose dissolved in the sorbitol melt during 1 h of isothermal holding at 110 and 150 degrees C, respectively. Optical microscopic observation also clearly showed the reduction in the size of sucrose crystals in sorbitol melt during the isothermal holding at those temperatures.  相似文献   
100.
The hypothesis of lipid rafts describes functional domains in biological membranes. It is often assumed that rafts form by spontaneous de-mixing of certain lipids and that they can be isolated as detergent-resistant membrane particles (DRMs) using the detergent Triton X-100 (TX). Here, we present a model that describes the process of domain formation in membranes in the presence and in the absence of TX. We measure the interactions between TX and an equimolar mixture of sphingomyelin (SM), cholesterol (Cho), and 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphatidylcholine (POPC) (1:1:1, mol) by means of isothermal titration calorimetry. Comparison with pure POPC membranes reveals a very unfavorable interaction between TX and SM/Cho, which causes a substantial tendency to segregate these molecules into separate, DRM-like (SM-rich) and fluid (TX-rich), domains. If rafts are indeed formed by spontaneous de-mixing of PC and SM/Cho, they must be very sensitive, and perturbations caused by techniques used to study rafts could lead to misleading results. If, however, rafts are much more stable than PC-SM-Cho domains, there must be an unknown raft stabilizer. Subtle changes of such a promoter could serve to modulate raft function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号