首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   20篇
  2021年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   4篇
  2011年   10篇
  2010年   7篇
  2009年   9篇
  2008年   14篇
  2007年   11篇
  2006年   21篇
  2005年   12篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有183条查询结果,搜索用时 46 毫秒
51.
The resolution of racemic δ-phenyl-δ-valerolactone by chromatography on cellulose triacetate CTA I results in one of the best separations of optical antipodes observed so far on this chiral stationary phase. The thermodynamics of the stereoselective interaction of the enantiomers of δ-phenly-δ-valerolactone have been studied by chromatography at different temperatures and by direct microcalorimetric investigations of the complexation with CTA I. This analysis suggests that the separation process is mainly controlled thermodynamically and that kinetic effects, if any, play a minor role. Microcalorimetric titration experiments indicate that specific (optimum) complexation sites on CTA I for the stronger retained enantiomer of δ-phenly-δ-valerolactone are rapidly saturated, whereas the first eluted enantiomer seems to interact much less selectively with defined interaction sites on the chiral polymer matrix. © 1993 Wiley-Liss, Inc.  相似文献   
52.
The direct HPLC enantiomeric separation of five fluorenone-1,4-dihydropyridine-3,5-dicarboxylic diesters has been achieved using a Chiralpak AD stationary phase obtaining simultaneously good enantioselectivities, resolution factors, and elution times. CD spectra of the individual enantiomers for two compounds were measured. Thermodynamic parameters associated with the adsorption equilibria of the enantiomers with the chiral stationary phase were obtained from HPLC runs at various temperatures. The conformational preferences of the synperiplanar fluorenone group and of the cis/cis ester groups were obtained by 1H NMR spectra, including NOE experiments. © 1996 Wiley-Liss, Inc.  相似文献   
53.
The temperature-induced helix to coil transition in a series of host peptides was monitored using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). Combination of these two techniques allowed direct determination of the enthalpy of helix-coil transition for the studied peptides. It was found that the enthalpy of the helix-coil transition differs for different peptides and this difference is related to the difference in the temperature for the midpoint of helix-coil transition. The enthalpy of the helix-coil transition decreases with the increase in temperature, thus providing the first experimental estimate for the heat capacity changes upon helix-coil transition, DeltaC(p). The values for DeltaC(p) of helix-coil transition are found to be negative, which is in contrast to the positive DeltaC(p) for protein unfolding. Analysis suggests that this negative DeltaC(p) of helix-coil transition is due to the exposure of the polar peptide backbone to solvent upon helix unfolding.  相似文献   
54.
Experimental data from global analyses of temperature (T) and denaturant dependence of the folding rates of small proteins led to an intrinsic enthalpic folding barrier hypothesis: to a good approximation, the T-dependence of folding rate under constant native stability conditions is Arrhenius. Furthermore, for a given protein, the slope of isostability folding rate versus 1/T is essentially independent of native stability. This hypothesis implies a simple relationship between chevron and Eyring plots of folding that is easily discernible when both sets of rates are expressed as functions of native stability. Using experimental data in the literature, we verify the predicted chevron-Eyring relationship for 14 proteins and determine their intrinsic enthalpic folding barriers, which vary approximately from 15 kcal/mol to 40 kcal/mol for different proteins. These enthalpic barriers do not appear to correlate with folding rates, but they exhibit correlation with equilibrium unfolding enthalpy at room temperature. Intrinsic enthalpic barriers with similarly high magnitudes apply as well to at least two cases of peptide-peptide and peptide-protein association, suggesting that these barriers are a hallmark of certain general and fundamental kinetic processes during folding and binding. Using a class of explicit-chain C(alpha) protein models with constant elementary enthalpic desolvation barriers between C(alpha) positions, we show that small microscopic pairwise desolvation barriers, which are a direct consequence of the particulate nature of water, can act cooperatively to give rise to a significant overall enthalpic barrier to folding. This theoretical finding provides a physical rationalization for the high intrinsic enthalpic barriers in protein folding energetics. Ramifications of entropy-enthalpy compensation in hydrophobic association for the height of enthalpic desolvation barrier are discussed.  相似文献   
55.
To improve the radical-scavenging activity of catechin, a planar catechin analogue was designed and synthesized by Fukuhara [J. Am. Chem. Soc. 124 (2002) 5952]. Although the planar catechin is less active than quercetin, it is much more active than catechin in its ability to scavenge galvinoxyl radical, suggesting that the rational design was successful. However, an interesting question remains: what is the basis for the enhanced radical-scavenging activity of the planar catechin? By DFT calculations, we determined that the galvinoxyl radical is scavenged through an electron-transfer mechanism rather than a hydrogen-atom-transfer mechanism. Moreover, the antioxidant anion, derived from proton dissociation, plays a key role in the radical-scavenging process. Hence, the different radical-scavenging activities of the three antioxidants may result from the different ionization potentials of their anions.  相似文献   
56.
Relationship between water content and afterripening in red rice   总被引:2,自引:0,他引:2  
Reactions regulating seed dormancy can proceed at water contents which are probably too low to permit metabolic activity. The loss of dormancy via afterripening of red rice. ( Oryza sativa L.) seeds was examined as a representative case. Equilibration of seeds to various moisture contents showed that afterripening was most rapid at 6–14% moisture content (dry weight basis). Afterripening did not occur at > 18% moisture content and was severely inhibited at < 5% moisture content. Seed viability was greater than 95% for all treatments. Utilization of moisture isotherms to calculate water-binding enthalpy values identified the optimal afterripening range as approximately the boundary between water-binding region 1 and region 2. From these findings, it is suggested that afterripening may involve some oxidative reactions which are inhibited at lower water contents by the rising free-energy and at the higher side by metabolic reactions.  相似文献   
57.
Extension of the (isothermal) Gibbs–Helmholtz equation for the heat capacity terms (ΔCp) allows formulating a temperature function of the free (Gibbs) energy change (ΔG). An approximation of the virtually unknown ΔCp temperature function enables then to determine and numerically solve temperature functions of thermodynamic parameters ΔH and ΔS (enthalpy and entropy change, respectively). Analytical solutions and respective numeric procedures for several such approximation formulas are suggested in the presented paper. Agreement between results obtained by this analysis with direct microcalorimetric measurements of ΔH (and ΔCp derived from them) was approved on selected cases of biochemical interactions presented in the literature. Analysis of several ligand-membrane receptor systems indicates that temperature profiles of ΔH and ΔS are parallel, largely not monotonic, and frequently attain both positive and negative values within the current temperature range of biochemical reactions. Their course is determined by the reaction change of heat capacity: temperature extremes (maximum or minimum) of both ΔH and ΔS occur at ΔCp?=?0, for most of these systems at roughly 285–305 K. Thus, the driving forces of these interactions may change from enthalpy-, entropy-, or enthalpy-entropy-driven in a narrow temperature interval. In contrast, thermodynamic parameters of ligand-macromolecule interactions in solutions (not bound to a membrane) mostly display a monotonic course. In the case of membrane receptors, thermodynamic discrimination between pharmacologically defined groups—agonists, partial agonists, antagonists—is in general not specified and can be achieved, in the best, solely within single receptor groups.  相似文献   
58.
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.  相似文献   
59.
We report here our differential scanning calorimetry measurements investigating the thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two saturated sterols with different ring configurations (5β-H and either 3α-OH or 3β-OH). These measurements differ in the proportions of sharp and broad components in the heating endotherms, representing the melting of the sterol-poor and sterol-rich lipid micro-domains of the DPPC bilayer, respectively. Our results suggest that the 5,10-cis ring configuration of both saturated sterols and the ring A conformations have the greatest influence on DPPC bilayer properties, most likely by inducing small increases in the mean area/molecule as compared to cholesterol. However, the C3-OH orientation also influences sterol miscibility, likely due to variations in the strength and number of interfacial H-bonds with changes in molecular area, which in turn probably reflect the depth of the sterol in the DPPC bilayer. This influence of C3-OH orientation is significantly greater than was observed in our earlier study of cholesterol/- and epicholesterol/DPPC mixtures. Overall, our results show that both saturated and unsaturated 3α-ols are less miscible than the corresponding 3β-ols, but that the presence of a Δ5 double bond can improve the sterol miscibility in the DPPC bilayer at high sterol concentrations.  相似文献   
60.
It is commonly believed that all membrane sterols are rigid all-trans ring systems with a fully extended alkyl side-chain and that they similarly influence phospholipid bilayer physical properties. Here, we report the sterol concentration-dependent, thermotropic phase behaviour of binary dipalmitoylphosphatidylcholine (DPPC)/sterol mixtures containing two similar 5α-H sterols with different functional group orientations (3α-OH or 3β-OH), which adopt an ideal all-trans planar ring conformation but lack the deformed ring B conformation of cholesterol (Chol) and epicholesterol (Echol), using differential scanning calorimetry (DSC). Our deconvolution of the DSC main phase transition endotherms show differences in the proportions of sterol-poor (sharp) and sterol-rich (broad) domains in the DPPC bilayer with increasing sterol concentration, which delineate gel/liquid-crystalline (Pβ′/Lα) and disordered gel (Lβ)/liquid-ordered (lo) phase regions. There are similarities in the DPPC main phase transition temperature, cooperativity and enthalpy for each 3β-ol and 3α-ol pair with increasing sterol concentration and differences in the parameters obtained for both the sterol-poor and sterol-rich regions. The sterol-poor domain persists over a greater concentration range in both 3α-ol/DPPC mixtures, suggesting that either those domains are more stable in the 3α-ols or that those sterols are less miscible in the sterol-rich domain. Corresponding parameters for the sterol-rich domain show that at sterol concentrations up to 20 mol%, the 5α-H,3β-ol is more effective at reducing the phase transition enthalpy of the broad component () than Chol, but is less effective at higher concentrations. Although mixtures containing Echol and 5α-cholestan-3α-ol have similar positive slopes below 7 mol% sterol, suggesting that they abolish the Lβ/lo phase transition equally effectively at low concentrations, Echol is more effective than the saturated 3α-ol at higher sterol concentrations. A comparison of obtained for the saturated and unsaturated pairs suggests that the latter sterols stabilize the lo phase and broaden and abolish the DPPC main phase transition more effectively than the saturated sterols at physiologically relevant concentrations, supporting the idea that the double bond of Chol and Echol promotes greater sterol miscibility and the formation of lo phase lipid bilayers relative to corresponding saturated sterols in biological membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号