首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   8篇
  国内免费   6篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
81.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   
82.
The function of fungal volatiles in fungal-plant interactions is poorly understood. The aim here was to address this lack of knowledge, focusing on truffles, ectomycorrhizal fungi that are highly appreciated for their aroma. The effect of volatiles released by truffles was tested on Arabidopsis thaliana in a closed chamber bioassay. The volatiles produced by Tuber melanosporum, Tuber indicum and Tuber borchii fruiting bodies inhibited A. thaliana in terms of root length and cotyledon leaf size, and in some cases induced a bleaching of the seedlings, thus indicating toxicity. Ten synthetic volatiles were tested in a similar way. The strongest inhibitory effect was observed with C(8) molecules such as 1-octen-3-ol, an alcohol with a typical 'fungal smell'. Two of these C(8) compounds were further tested to investigate their mechanism of action. 1-Octen-3-ol and trans-2-octenal induced an oxidative burst (hydrogen peroxide, H(2)O(2)) in the A. thaliana leaves as well as a strong increase in the activities of three reactive oxygen species (ROS)-scavenging enzymes. These results demonstrate that fungal volatiles inhibit the development of A. thaliana and modify its oxidative metabolism. Even though limited to laboratory observations, these results indicate the presence of a hitherto unknown function of fungal volatiles as molecules that mediate fungal-plant interactions.  相似文献   
83.
Volatile organic compounds (VOCs) are chemical species that play an important role in determining the characteristic aroma and flavor of fruits. Apple (Malus × domestica Borkh .) cultivars differ in their aroma and composition of VOCs. To determine varietal differences in the aroma profiles, VOCs emitted by 7 modern and 35 old apple cultivars were analyzed using Proton Transfer Reaction Mass Spectrometry (PTR‐MS). PTR‐MS is a rapid, reproducible, and non‐destructive spectrometric technique for VOC analysis of single fruits, developed for direct injection analysis. In the present study, we analyzed the differences in the emission of VOCs from single fruits at harvest and after a storage period of 60±10 days, followed by 3 d of shelf life. Our results show that VOC profile differences among apple cultivars were more pronounced after storage than at harvest. Furthermore, chemodiversity was higher in old cultivars compared to modern cultivars, probably due to their greater genetic variability. Our data highlight the importance of storage and shelf life are crucial for the development of the typical aroma and flavor of several apple cultivars. The validity of the method is demonstrated by comparison of two different harvest years.  相似文献   
84.
The results from two previously published case studies were used to assess the importance of use-related emissions from building materials in a life cycle perspective. The first study was an LCA study of linoleum, vinyl flooring, and solid wood flooring, while the second study examined the Volatile Organic Compounds (VOCs) emitted by these floorings. For linoleum and vinyl flooring, the emitted amounts for the use phase are of much the same magnitude as those emitted in the rest of the life cycle, but in the case of solid wood flooring the emissions of the use phase far exceed those of the remaining life cycle. The ranking of the selected floorings in the LCA study did not change when the impact of the use phase was also considered. This study recommends that LCAs should not neglect flooring-related emissions in the use phase when assessing regional and global environmental effects.  相似文献   
85.
The 21st century has brought new challenges to the agri-food industry due to population growth, global warming, and greater public awareness of environmental issues. Ensuring global food security for future generations is crucial. However, pests, weeds, and diseases still significantly contribute to crop losses, and the availability of effective conventional synthetic pesticides is decreasing. To address this, new and diverse pest management tools are needed. One pest management tool showing potential for invertebrate pest management is the exploitation of volatile organic compounds (VOCs)—in particular, the compounds 1-octen-3-ol and 3-octanone. This review aims to explore the extent to which 1-octen-3-ol and 3-octanone show potential in the future management of invertebrate crop and animal pests. A significant increase in the rate of publication of literature on the use of 1-octen-3-ol and 3-octanone in crop protection since 2018 is identified by this review, therefore, showing the potential importance of these compounds for use in future pest management. This review also identifies key interactions between naturally occurring biosynthesised 1-octen-3-ol and 3-octanone, and a range of invertebrate targets. Many of these interactions with key crop pests are sourced from the taxonomic families Lamiaceae, Fabaceae, and Trichomaceae. However, analysis of the practical application of these sources in an integrated pest management programme identifies clear limitations with the use of naturally occurring biosynthesised 1-octen-3-ol and 3-octanone. Rather, future focus should be placed on the development and exploitation of synthesised nature identical 1-octen-3-ol and 3-octanone for use as a biopesticide product. Overall, 1-octen-3-ol and 3-octanone show potential for exploitation in future crop protection, being abundant in source and diversity of invertebrate interactions. However, their use as a naturally occurring biosynthesised chemical is likely not practical for direct implementation in crop protection. Rather, focus should be placed on the development and exploitation of synthesised nature identical variants of these compounds for use as a biopesticide.  相似文献   
86.
This work describes the growth of filamentous fungi in biofilters for the degradation of hydrophobic VOCs. The study system was n-hexane and Fusarium solani B1. The system is mathematically described and the main physical, kinetic data and morphological parameters were obtained by independent experiments and validated with data from laboratory experiments. The model describes the increase in the transport area by the growth of the filamentous cylindrical mycelia and its relation with n-hexane elimination in quasi-stationary state in a biofilter. The model describing fungal growth includes Monod-Haldane kinetic and hyphal elongation and ramification. A specific surface area of transport (SSAT) of 1.91 x 10(5) m(2) m(-3) and a maximum elimination capacity (EC) of 248 g m(-3) h(-1) were obtained by the mathematical model simulation, with a 10% of error with respect to the experimental EC.  相似文献   
87.
88.
Environmental policy is oriented toward integrated pollution prevention, taking into consideration all environmental media (air, water, land) and energy consumption. Therefore, methods for assessing environmentally relevant installations are needed which take economic, technical, and especially ecological criteria into account simultaneously. Mass and energy flow models are used for the representation of production processes and form the basis for the inventory phase in life-cycle assessment (LCA). For the interpretation of LCA results and the weighting of the aggregated impact assessment indicators, approaches of multicriterion analysis (MCA) have been proposed. These can analyze ecological aspects as well as economic and technical criteria. Recent developments in LCA focus on decision support for policy makers or decision boards. Appropriate support for investment decisions on environmentally relevant installations, however, is rare.
Based on a case study of the sector called surface coating, an MCA of environmentally relevant installations is described. With the help of a mass and energy flow management system, alternative scenarios, depicting the use of solvent-reduced materials and environmentally friendly techniques, are modeled for the job coater processes in case studies of coating of mobile phones and coating of polyvinyl chloride (PVC) parts destined for the automobile industry. The modeled scenarios are further analyzed by using a multicriterion decision support module. The application of the outranking approach PROMETHEE is illustrated. A further investigation of the derived ranking can be obtained through sensitivity analyses. Moreover, the results derived by PROMETHEE are compared with the outcomes of the multicriterion approaches multiattribute utility theory and analytical hierarchy process.  相似文献   
89.
植物源挥发性有机物的生态意义(综述)   总被引:1,自引:0,他引:1  
植物释放的挥发性有机气体(volatile organic compounds, VOCs)在对流层大气中通过一系列氧化还原反应,改变大气的化学组成,对臭氧合成、一氧化碳生成、甲烷氧化等有重要作用,其氧化物质对区域乃至全球的环境和气候都产生一定的影响。本文综述植物释放的VOCs对大气化学、温室效应、光化学烟雾的影响;介绍VOCs释放机制、合成途径及排放速率;对今后研究方向和大面积种植林木、城市绿化提出建议。  相似文献   
90.
A two-phase partitioning bioreactor (TPPB), employing styrene-butadiene co-polymer beads as the sequestering/delivery phase, was used to treat high step change loadings of toluene in a contaminated air stream. The polymers, which are biocompatible and non-bioavailable, allowed the use of a microbial consortium and effectively absorbed and released the toluene vapours for biodegradation, while providing a buffering effect against high toluene transients. Toluene loadings were increased from a base steady state rate of 343-6,000 g/m(3) h for 1 h periods, with the polymer-aqueous system substantially outperforming a single phase system on the basis of improving the toluene removal efficiency and reducing the maximum toluene concentrations emitted during the transients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号