首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   8篇
  国内免费   6篇
  2023年   4篇
  2022年   7篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   5篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   8篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
41.
Biofiltration systems utilizing thermophilic (55C) bacteria were constructed and tested for the removal of methanol and α-pinene — two important volatile organic compounds (VOCs) in the forest products industry. Thermophilic bacterial mixtures that can degrade both methanol and α-pinene were obtained via enrichment techniques. Two bench-scale thermophilic biofiltration systems (1085 and 1824 cm3) were used to examine compound removals at different residence times, with influent concentrations of 110 ppmv methanol and 15 ppmv α-pinene. At a residence time of 10.85 min, the smaller system had removal efficiencies of >98% for methanol, but only 23% for α-pinene. The larger system was operated with the same parameters to evaluate residence time and surfactant effects on compound removals. At a residence time of 18.24 min, both methanol and α-pinene removal rates were ≥95%. However, α-pinene removal dropped to 26% at a residence time of 6.08 min; methanol removal was not affected. Subsequent addition of a surfactant mixture increased α-pinene removal to 94% at the shortest residence time. No residual α-pinene was detected with the support medium Celite R-635, indicating that the surfactant may increase mass transfer of α-pinene. Journal of Industrial Microbiology & Biotechnology (2001) 26, 127–133. Received 06 June 2000/ Accepted in revised form 09 November 2000  相似文献   
42.
Acute ozone exposure triggers major emissions of volatile organic compounds (VOCs), but quantitatively, it is unclear how different ozone doses alter the start and the total amount of these emissions, and the induction rate of different stress volatiles. It is also unclear whether priming (i.e. pre‐exposure to lower O3 concentrations) can modify the magnitude and kinetics of volatile emissions. We investigated photosynthetic characteristics and VOC emissions in Phaseolus vulgaris following acute ozone exposure (600 nmol mol?1 for 30 min) under illumination and in darkness and after priming with 200 nmol mol?1 O3 for 30 min. Methanol and lipoxygenase (LOX) pathway product emissions were induced rapidly, followed by moderate emissions of methyl salicylate (MeSA). Stomatal conductance prior to acute exposure was lower in darkness and after low O3 priming than in light and without priming. After low O3 priming, no MeSA and lower LOX emissions were detected under acute exposure. Overall, maximum emission rates and the total amount of emitted LOX products and methanol were quantitatively correlated with total stomatal ozone uptake. These results indicate that different stress volatiles scale differently with ozone dose and highlight the key role of stomatal conductance in controlling ozone uptake, leaf injury and volatile release.  相似文献   
43.
Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon (aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass and remain on the solid coproduct called biochar. Such pollutants could have adverse effects on the plant growth as well as microbial community in soil. Although biochar has been proposed as a ‘carbon negative strategy’ to mitigate the greenhouse gas emissions, the impacts of its application with respect to long‐term persistence and bioavailability of hazardous components are not clear. Moreover, the co‐occurrence of low molecular weight VOCs with PAHs in biochar may exert further phytotoxic effects. This review describes the basic need to unravel key mechanisms driving the storage vs. emission of these organics and the dynamics between the sorbent (biochar) and soil microbes. Moreover, there is an urgent need for standardized methods for quantitative analysis of PAHs and VOCs in biochar under environmentally relevant conditions. This review is also extended to cover current research gaps including the influence of biochar application on the short‐ and long‐term fate of PAHs and VOCs and the proper control tactics for biochar quality and associated risk.  相似文献   
44.
大气CO2浓度增加和温度升高引起的全球变化对土壤生态系统的生物地球化学过程产生了重要影响.挥发性卤代烃(VOXs)的合成与释放是土壤参与全球物质循环与能量流动的重要途径.本研究以南亚热带乔木幼苗木荷和杉木为对象,设置对照(CK)、CO2浓度升高(EC)、增温(ET)以及两者同时升高(EC+ET)4个处理,运用开顶箱及吹...  相似文献   
45.
环境因子对植物释放挥发性化合物的影响   总被引:9,自引:0,他引:9  
李继泉  金幼菊  沈应柏  洪蓉 《植物学通报》2001,18(6):649-656,677
对近年来有关环境因子与植物释放挥发性化合物关系的研究进展进行了综合和概括。本文主要包括3类挥发性化合物。⑴异戊二烯是由叶绿体产生并且直接释放到大气中的C5化合物。⑵单萜类化合物是一类环状或非环状的C10化合物,它在植物体内合成后首先贮存于体内的特殊结构中(如树脂道、油腺),然后由此通过气孔向大气中释放。⑶含氧挥发性化合物以各种形式释放大大气中。它包括醇、醛、酮、酯和有机酸。本文的重点是前两者,主要阐述了二方面内容:⑴植物军发性化合物的生物合成和释放机理。⑵环境因子(如温度、光照、水分胁迫、营养、CO2浓度、空气湿度)及植物的发育阶段、机械损伤和昆虫取食等对植物挥发性化合物合成与释放的影响机制。  相似文献   
46.
During some previous works, a packed-bed lab-scale biofilter (177 . 10(-6) m3), inoculated with a selected strain of Aspergillus niger had been tested for the abatement of hexane vapors, showing a maximum elimination capacity of 200 g hexane/m3 reactor/h. A steady-state mathematical model taking into account axial dispersion effect was applied to describe the process and predict experimental results, but many model parameters could not be calculated from experimental data. The aim of the present work was to carry out further investigations to accurately determine the dispersion coefficient and the kinetics parameters to verify the effective validity of the model. Analysis of residential time distribution revealed the presence of a certain degree of axial dispersion (dispersion coefficient D of 1.22 . 10(-4) m2/s). Experimental data from kinetic trials carried out in reduced height reactors, together with data from full-scale runs, were elaborated to estimate the kinetic saturation constant (K(s)), the coefficient yield (Y), the maximum growth rate (mu(max)) and maximum substrate degradation rate (r(max)). All these parameters were introduced into the model, which was then solved by simulation software finding a good correlation between experimental and theoretical results.  相似文献   
47.
Methylbutenol is a 5-carbon alcohol that is produced and emitted by several species of pine in western North America, and may have important impacts on the tropospheric chemistry of this region. In the present study the response of methylbutenol basal emission rate (measured at a constant light intensity of 1500 µmol m−2 s−1 and temperature of 30 °C) to the light and temperature conditions of the growth environment was examined, using field-grown plants shielded with shade cloth of various densities. Methylbutenol basal emission rates increased linearly with the temperature of the growth environment but did not respond to the shading of foliage during growth and development. Both photosynthesis and basal methylbutenol emission rate declined in older needles; however, these declines appear to result from parallel but independent processes and not from basal MBO emission rate directly tracking photosynthetic rates. Older needles did not occupy cooler microenvironments within the canopy; and thus differing thermal microenvironment could not explain the reduced MBO emission in older needles.  相似文献   
48.
In tritrophic interactions, plants recognize herbivore-produced elicitors and release a blend of volatile compounds (VOCs), which work as chemical cues for parasitoids or predators to locate their hosts. From detection of elicitors to VOC emissions, plants utilize sophisticated systems that resemble the plant–microbe interaction system. Fatty acid–amino acid conjugates (FACs), a class of insect elicitors, resemble compounds synthesized by microbes in nature. Recent evidence suggests that the recognition of insect elicitors by an ancestral microbe-associated defense system may be the origin of tritrophic interactions mediated by FACs. Here we discuss our findings in light of how plants have customized this defense to be effective against insect herbivores, and how some insects have successfully adapted to these defenses.  相似文献   
49.
The environmental risk controllability assessment system and its method of controlling volatile organic compounds (VOCs) during remediation of contaminated sites are established in this article based on soil vapor extraction (SVE) technology. According to the properties of VOCs and the technical and operational characteristics of the site remediation process, the environmental risk controllability index system includes environmental risk identification, risk source analysis, and risk assessment. Environmental risk management during site remediation was focused on technical control methods and engineering control technologies. Specifically, acceptance based on risk management was suitable for low-risk levels such as RRI3 and RRI4. Furthermore, control methods for high-level risk (RRI1 or RRI2) could be developed along with transformation and control, combined with the necessary emergency risk plan.  相似文献   
50.
This exploratory study was designed to assess air quality in a rural western Colorado area where residences and gas wells co-exist. Sampling was conducted before, during, and after drilling and hydraulic fracturing of a new natural gas well pad. Weekly air sampling for 1 year revealed that the number of non-methane hydrocarbons (NMHCs) and their concentrations were highest during the initial drilling phase and did not increase during hydraulic fracturing in this closed-loop system. Methylene chloride, a toxic solvent not reported in products used in drilling or hydraulic fracturing, was detected 73% of the time; several times in high concentrations. A literature search of the health effects of the NMHCs revealed that many had multiple health effects, including 30 that affect the endocrine system, which is susceptible to chemical impacts at very low concentrations, far less than government safety standards. Selected polycyclic aromatic hydrocarbons (PAHs) were at concentrations greater than those at which prenatally exposed children in urban studies had lower developmental and IQ scores. The human and environmental health impacts of the NMHCs, which are ozone precursors, should be examined further given that the natural gas industry is now operating in close proximity to human residences and public lands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号