首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   6篇
  国内免费   9篇
  236篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   11篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   15篇
  2013年   22篇
  2012年   9篇
  2011年   15篇
  2010年   13篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1971年   2篇
排序方式: 共有236条查询结果,搜索用时 0 毫秒
171.

Background

Apolipoprotein A5 (APOA5) gene variants are associated with increased plasma triglycerides, a risk factor for metabolic syndrome (MS). The goal of the current study was the investigation of the distribution of T-1131C variant among obese adolescents with MS compared with healthy controls.

Subjects and methods

The study included 150 obese adolescents (75 males and 75 females) with MS and 204 age and sex matched normal healthy controls (100 males and 104 females). The mean age of the patients was 15.47 ± 2.54 years, ranged from 17 to 20 years. They were genotyped by polymerase chain reaction–restriction fragment length polymorphism for the mutation (T-1131C).

Results

The blood pressure, triglyceride and HOMA-R levels were significantly higher and HDL-C levels were significantly lower in carrier (TC + CC) compared to non-carrier (TT) MS patients. There was accumulation of − 1131C allele frequency in the MS group (31.33% vs. control group 11.76%), p < 0.001. The genotypes were in Hardy–Weinberg equilibrium both in the patients with metabolic syndrome and in the control subjects. Results of analysis of multiple regression models showed that the ApoA5 − 1131C carriers showed an increased incidence of MS (OR = 1.73, 95% CI: 1.41–2.11).

Conclusions

The present study suggests that the 1131T>C polymorphism is a risk factor for the development of metabolic syndrome in obese adolescents.  相似文献   
172.
The metabolic syndrome (MetS) represents an emerging health burden for governments and health care providers. Particularly relevant for prevention and early management of MetS are lifestyle conditions including physical activity and the diet. It has been shown that green tea, when consumed on a daily basis, supports health. Many of the beneficial effects of green tea are related to its catechin, particularly (−)-epigallocatechin-3-gallate (EGCG), content. There is conclusive evidence from in vitro and animal studies which provide the concepts for underlying functional mechanisms of green tea catechins and their biological actions. An increasing number of human studies have explored the effects of green tea catechins on the major MetS conditions such as obesity, type-2 diabetes and cardiovascular risk factors. This article provides a comprehensive overview of the human studies addressing the potential benefits of green tea catechins on the MetS.The number of human studies in this field is still limited. However, the majority of human epidemiological and intervention studies demonstrate beneficial effects of green tea or green tea extracts, rich in EGCG on weight management, glucose control and cardiovascular risk factors. The optimal dose has not yet been established.The current body of evidence in humans warrants further attention. In particular, well-controlled long-term human studies would help to fully understand the protective effects of green tea catechins on parameters related to the MetS.  相似文献   
173.
The interest in adiponutrin stems from adiponutrin variant I148M, which is strongly associated to non-alcoholic fatty liver disease. Adiponutrin has to date been considered to be solely an intracellular protein, with a role in lipid metabolism in liver and adipose tissue. However, a physiologically relevant role for adiponutrin has not been found. The aim of this study was to investigate the presence of adiponutrin in human plasma, a new facet of adiponutrin research. We demonstrate that adiponutrin is present in plasma as disulfide-bond dependent multimers, estimated to circulate at a concentration of 1.25–4 nM. Experiments reveal that adiponutrin is released from HepG2 cells in the presence of oleate. The presence of adiponutrin in plasma makes it accessible for clinical investigations and use as a potential biomarker for metabolic disease.  相似文献   
174.
Hepatic de-novo lipogenesis and production of triglyceride rich very low density lipoprotein (VLDL) is increased in the state of insulin resistance, however, the role of a negative regulator of the insulin signaling pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to high glucose (33 mM). The results showed that high glucose induced SHIP2 mRNA and protein levels in HepG2 cells. Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) ameliorated high glucose-induced de-novo lipogenesis and secretion of apoB containing lipoprotein in HepG2 cells, as demonstrated by a reduction in both secreted apoB and MTP expression, and decreased triglyceride levels and the expression of lipogenic genes such as SREBP1c, FAS and ACC. Overexpression of the SHIP2-DN decreased high glucose-induced apoB containing lipoproteins secretion via reduction in ROS generation, JNK phosphorylation and Akt activation. Furthermore, using the specific inhibitor and activator, it was found that the AMPK/mTOR/SREBP1 is the signaling pathway that mediates the effects of SHIP2 modulation on hepatic de-novo lipogenesis. Taken together, these findings suggest that SHIP2 is an important regulator of hepatic lipogenesis and lipoprotein secretion in insulin resistance state.  相似文献   
175.
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.  相似文献   
176.
《Cell metabolism》2020,31(3):605-622.e10
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   
177.
178.
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号