首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   6篇
  国内免费   9篇
  236篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   11篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   15篇
  2013年   22篇
  2012年   9篇
  2011年   15篇
  2010年   13篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   6篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   7篇
  1983年   3篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1971年   2篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
131.
Monogenic hypobetalipoproteinemias include three disorders: abetalipoproteinemia (ABL) and chylomicron retention disease (CMRD) with recessive transmission and familial hypobetalipoproteinemia (FHBL) with dominant transmission. We investigated three unrelated Tunisian children born from consanguineous marriages, presenting hypobetalipoproteinemia associated with chronic diarrhea and retarded growth. Proband HBL-108 had a moderate hypobetalipoproteinemia, apparently transmitted as dominant trait, suggesting the diagnosis of FHBL. However, she had no mutations in FHBL candidate genes (APOB, PCSK9 and ANGPTL3). The analysis of MTTP gene was also negative, whereas SAR1B gene resequencing showed that the patient was homozygous for a novel mutation (c.184G>A), resulting in an amino acid substitution (p.Glu62Lys), located in a conserved region of Sar1b protein. In the HBL-103 and HBL-148 probands, the severity of hypobetalipoproteinemia and its recessive transmission suggested the diagnosis of ABL. The MTTP gene resequencing showed that probands HBL-103 and HBL-148 were homozygous for a nucleotide substitution in the donor splice site of intron 9 (c.1236+2T>G) and intron 16 (c.2342+1G>A) respectively. Both mutations were predicted in silico to abolish the function of the splice site. In vitro functional assay with splicing mutation reporter MTTP minigenes showed that the intron 9 mutation caused the skipping of exon 9, while the intron 16 mutation caused a partial retention of this intron in the mature mRNA. The predicted translation products of these mRNAs are non-functional truncated proteins.  相似文献   
132.
A computer-centered spectrofluorimeter was used to examine the physicochemical properties of hepatic microsomes and microsomal lipids obtained from isolated rat livers perfused with medium containing palmitate or oleate. The fatty acid composition and degree of unsaturation of the liver microsomal lipids reflected that the fatty acid present in the perfusate. The absorption corrected fluorescence, relative fluorescence efficiency, polarization, and fluorescence anisotropy of several fluorescent probe molecules were measured to determine if their different microenvironments may be altered by the type of fatty acid infused. The probe molecules β-parinaric acid and 1.6-diphenyl-1,3,5-hexatriene had higher values for each of these parameters when incorporated into microsomes obtained from livers perfused with a medium containing palmitate than with oleate. The same parameters measured for cholesta-5,7,9(11)-trien-3β-ol and N-phenyl-1-naphthylamine were not altered. These differences appeared to be primarily due to alterations in microviscosity of the probe microenvironments since the rotational correlation time of 1,6-diphenyl-1,3,5-hexatriene was 25% lower in the microsomes from livers perfused with oleate as compared to livers perfused with palmitate. Thermal discontinuities in Arrhenius plots were noted in the intact microsomes but not in the isolated microsomal lipids with the fluorescence probe molecule β-parinaric acid. Break points occurred at 10°C and 26°C for microsomes from livers perfused with palmitate and at 12°C and 17°C for microsomes from livers perfused with oleate containing medium. These results suggest that the physicochemical properties of liver microsomes were determined in part by the fatty acid in the perfusate.  相似文献   
133.
Adipose differentiation-related protein (ADRP) is a major protein associated with lipid droplets in various types of cells, including macrophage-derived foam cells and liver cells. However, the role of ADRP in the processes of formation and regression of these cells is not understood. When J774 murine macrophages were incubated with either VLDL or oleic acid, their content of both ADRP and triacylglycerol (TG) increased 3- to 4-fold. Induction of ADRP during TG accumulation was also observed in oleic acid-treated HuH-7 human liver cells. Addition of triacsin C, a potent inhibitor of acyl-CoA synthase, for 6 h decreased the amount of TG in VLDL-induced foam cells and oleic acid-treated liver cells; it decreased the amount of ADRP protein in parallel, indicating the amount of ADRP reduced during regression of the lipid-storing cells. Addition of a proteasome inhibitor during triacsin C treatment abolished the ADRP decrease and accumulated polyubiquitinated ADRP. In addition, the proteasome inhibitor reversed not only the degradation of ADRP but also TG reduction by triacsin C. These results suggest that cellular amounts of ADRP and TG regulate each other and that the ubiquitin-proteasome system is involved in degradation of ADRP during regression of lipid-storing cells.  相似文献   
134.
Methionine- and choline-deficient diet (MCD) is a model for nonalcoholic steatohepatitis (NASH) in rodents. However, the mechanism of NASH development by dietary methionine/choline deficiency remains undetermined. To elucidate the early metabolic changes associated with MCD-NASH, serum metabolomic analysis was performed using mice treated with MCD and control diet for 3 days and 1  week, revealing significant increases in oleic and linoleic acids after MCD treatment. These increases were correlated with reduced body weight and white adipose tissue (WAT) mass, increased phosphorylation of hormone-sensitive lipase, and up-regulation of genes encoding carboxylesterase 3 and β2-adrenergic receptor in WAT, indicating accelerated lipolysis in adipocytes. The changes in serum fatty acids and WAT by MCD treatment were reversed by methionine supplementation, and similar alterations were detected in mice fed a methionine-deficient diet (MD), thus demonstrating that dietary methionine deficiency enhances lipolysis in WAT. MD treatment decreased glucose and increased fibroblast growth factor 21 in serum, thus exhibiting a similar metabolic phenotype as the fasting response. Comparison between MCD and choline-deficient diet (CD) treatments suggested that the addition of MD-induced metabolic alterations, such as WAT lipolysis, to CD-induced hepatic steatosis promotes liver injury. Collectively, these results demonstrate an important role for dietary methionine deficiency and WAT lipolysis in the development of MCD-NASH.  相似文献   
135.
The association of low density lipoprotein (LDL) with proteoglycans of the intima, in particular chondroitin 6-sulphate proteoglycans, may contribute to LDL accumulation during atherogenesis. We studied the interactions of apolipoprotein B-100 (apo B-100) peptide segments and model peptides with chondroitin 6-sulphate. The ability of these peptides to inhibit complex formation between LDL and chondroitin 6-sulphate was used as a measurement of the interaction. Results from earlier studies suggest that surface located segments of apo B-100 are responsible for the interaction of LDL with heparin and chondroitin sulphate-rich arterial proteoglycans. Therefore 16 hydrophilic apo B-100 peptides were selected for studies and synthesized with a peptide synthesizer. These synthetic peptides were 7 to 26 amino acids long. Four of the peptides inhibited the association of LDL with chondroitin 6-sulphate, namely apo B segments 4230–4254, 3359–3377, 3145–3157 and 2106–2121. The 3359–3377 segment was the most efficient. A common feature betweeb the interacting peptides was an excess of positively charged side chains and based on these results we synthesized nine model peptides that shared sequence characateristics with the interacting apo B-100 peptides. Five of these: RSGRKRSGK, RSSRKRSGK, RGGRKRGGK, RSRSRSRSR AND RGRGRGRGR were shown to block the LDL-chrondroitin-6-sulphate association, RSRSRSRSR being the most effective. The results suggest that the optimal association of the peptides with chrondroitin 6-sulphate is obtained with a minimal chain length of nine amino acids and a minimum of five positive charges and that flexibility in the binding region is important.  相似文献   
136.
The metabolic syndrome (MetS) represents an emerging health burden for governments and health care providers. Particularly relevant for prevention and early management of MetS are lifestyle conditions including physical activity and the diet. It has been shown that green tea, when consumed on a daily basis, supports health. Many of the beneficial effects of green tea are related to its catechin, particularly (−)-epigallocatechin-3-gallate (EGCG), content. There is conclusive evidence from in vitro and animal studies which provide the concepts for underlying functional mechanisms of green tea catechins and their biological actions. An increasing number of human studies have explored the effects of green tea catechins on the major MetS conditions such as obesity, type-2 diabetes and cardiovascular risk factors. This article provides a comprehensive overview of the human studies addressing the potential benefits of green tea catechins on the MetS.The number of human studies in this field is still limited. However, the majority of human epidemiological and intervention studies demonstrate beneficial effects of green tea or green tea extracts, rich in EGCG on weight management, glucose control and cardiovascular risk factors. The optimal dose has not yet been established.The current body of evidence in humans warrants further attention. In particular, well-controlled long-term human studies would help to fully understand the protective effects of green tea catechins on parameters related to the MetS.  相似文献   
137.
The strongest known genetic risk factor for the development of late-onset Alzheimer disease is inheritance of the apolipoprotein (apo) E4 (ε4 allele) although the mechanisms underlying this connection are still not entirely clear. In this review, we shall discuss the role of apo E in the brain, particularly in relation to Alzheimer disease. Cholesterol transport and homeostasis in the central nervous system (CNS) are separated from that in the peripheral circulation by the blood–brain barrier. However, the brain operates its own lipoprotein transport system that is mediated by high density lipoprotein-sized, apo E-containing lipoproteins that are synthesized and secreted by glial cells (primarily astrocytes). Several ATP-binding cassette (ABC) transporters are expressed in the brain, including ABCA1 and ABCG1 which play important roles in the transfer of phospholipids and cholesterol to apo E. The astrocyte-derived apo E-containing lipoproteins can bind to, and be internalized by, receptors of the low density lipoprotein receptor superfamily that are located on the surface of neurons. In addition to these receptors serving as endocytosis receptors for lipoproteins, several of these receptors also act as signaling receptors in neurons and activate pathways involved in axonal growth, as well as neuronal survival. These beneficial pathways appear to be enhanced to a greater extent by apo E3 than by apo E4. Apo E has also been implicated in the deposition of amyloid plaques since apo E3, more readily than apo E4, forms a complex with Aß peptides, and mediates the degradation of amyloid deposits.  相似文献   
138.

Introduction

Long-chain polyunsaturated (LCP) fatty acids (FA) are important during infant development. Mother-to-infant FA-transport occurs at the expense of the maternal status. Maternal and infant FA-status change rapidly after delivery.

Methods

Comparison of maternal (mRBC) and infant erythrocyte (iRBC)-FA-profiles at delivery and after 3 months exclusive breastfeeding in relation to freshwater-fish intakes. Approximation of de-novo-lipogenesis (DNL), stearoyl-CoA-desaturase (SCD), elongation-of-very-long-chain-FA-family-member-6 (Elovl-6), delta-5-desaturase (D5D) and delta-6-desaturase (D6D)-enzymatic activities from their product/essential-FA and product/substrate-ratios.

Results and discussion

Increasing iRBC-14:0 derived from mammary-gland DNL. Decreasing mRBC-ω9, but increasing iRBC-ω9, suggest high ω9-FA-transfer via breastmilk. Decreasing (m+i)RBC-16:0, DNL- and SCD-activities, but increasing (m+i)RBC-18:0 and Elovl-6-activity suggest more pronounced postpartum decreases in DNL- and SCD-activities, compared to Elovl-6-activity. Increasing (m+i)RBC-18:3ω3, 20:5ω3, 22:5ω3, 18:2ω6, mRBC-20:4ω6 and (m+i)D5D-activity, but decreasing mRBC-22:6ω3 and (m+i)D6D-activity and dose-dependent changes in iRBC-22:6ω3 confirm that D6D-activity is rate-limiting and 22:6ω3 is important during lactation. Fish-intake related magnitudes of postpartum FA-changes suggest that LCPω3 influence DNL-, SCD- and desaturase-activities.  相似文献   
139.
We have examined the kinetics and thermodynamics of the exchange of a fluorescent amphiphile derived from a phospholipid, NBD-DMPE, between serum albumin and the serum lipoproteins of high density (HDL2 and HDL3), LDL, and VLDL. Binding of the fluorescent lipid amphiphile to bovine serum albumin is characterized, at 35 degrees C, by an equilibrium binding constant of approximately 3 x 10(6) M(-1) and a characteristic time < or = 0.1 s. Association of NBD-DMPE with the lipoprotein particles, if considered as a partitioning of amphiphile monomers between the aqueous phase and the lipoprotein particles, is characterized by an equilibrium partition coefficient between 10(5) and 10(6), being highest for LDL and lowest for HDL. The association of NBD-DMPE monomers with lipoprotein particles can be described by insertion rate constants on the order of 10(5) M(-1) s(-1) for VLDL and LDL and 10(4) M(-1) s(-1) for HDL. The desorption rate constants are on the order of 10(-5) s(-1) for all particles. The study was performed as a function of temperature between 15 and 35 degrees C. This permitted the calculation of the equilibrium thermodynamic parameters (deltaG(o), deltaH(o), and deltaS(o)) as well as the activation parameters (deltaG++(o), deltaH++(o), and deltaS++(o)) for the insertion and desorption processes. The association equilibrium is dominated by the entropic contribution to the free energy in all cases. The results are discussed in relation to phospholipid and amphiphile exchange phenomena involving the lipoproteins.  相似文献   
140.
The G0/G1 switch gene 2 (G0S2) was originally identified in blood mononuclear cells following induced cell cycle progression. Translation of G0S2 results in a small basic protein of 103 amino acids in size. It was initially believed that G0S2 mediates re-entry of cells from the G0 to G1 phase of the cell cycle. Recent studies have begun to reveal the functional aspects of G0S2 and its protein product in various cellular settings. To date the best-known function of G0S2 is its direct inhibitory capacity on the rate-limiting lipolytic enzyme adipose triglyceride lipase (ATGL). Other studies have illustrated key features of G0S2 including sub-cellular localization, expression profiles and regulation, and possible functions in cellular proliferation and differentiation. In this review we present the current knowledge base regarding all facets of G0S2, and pose a variety of questions and hypotheses pertaining to future research directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号