首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42879篇
  免费   2822篇
  国内免费   2043篇
  2024年   72篇
  2023年   755篇
  2022年   823篇
  2021年   1371篇
  2020年   1487篇
  2019年   1941篇
  2018年   1625篇
  2017年   1158篇
  2016年   1216篇
  2015年   1317篇
  2014年   2313篇
  2013年   2847篇
  2012年   1782篇
  2011年   2287篇
  2010年   2421篇
  2009年   1897篇
  2008年   1914篇
  2007年   2103篇
  2006年   1844篇
  2005年   1865篇
  2004年   1798篇
  2003年   1458篇
  2002年   1151篇
  2001年   884篇
  2000年   676篇
  1999年   753篇
  1998年   668篇
  1997年   602篇
  1996年   611篇
  1995年   625篇
  1994年   594篇
  1993年   546篇
  1992年   500篇
  1991年   431篇
  1990年   372篇
  1989年   330篇
  1988年   330篇
  1987年   255篇
  1986年   262篇
  1985年   273篇
  1984年   324篇
  1983年   157篇
  1982年   239篇
  1981年   187篇
  1980年   171篇
  1979年   123篇
  1978年   100篇
  1977年   80篇
  1976年   77篇
  1974年   31篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
931.
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional DNA repair protein localized in different subcellular compartments. The mechanisms responsible for the highly regulated subcellular localization and “interactomes” of this protein are not fully understood but have been closely correlated to the posttranslational modifications in different biological context. In this work, we attempted to develop a bio-nanocomposite with antibody-like properties that could capture APE1 from cellular matrices to enable the comprehensive study of this protein. By fixing the template APE1 on the avidin-modified surface of silica-coated magnetic nanoparticles, we first added 3-aminophenylboronic acid to react with the glycosyl residues of avidin, followed by addition of 2-acrylamido-2-methylpropane sulfonic acid as the second functional monomer to perform the first step imprinting reaction. To further enhance the affinity and selectivity of the binding sites, we carried out the second step imprinting reaction with dopamine as the functional monomer. After the polymerization, we modified the nonimprinted sites with methoxypoly (ethylene glycol) amine (mPEG-NH2). The resulting molecularly imprinted polymer-based bio-nanocomposite showed high affinity, specificity, and capacity for template APE1. It allowed for the extraction of APE1 from the cell lysates with high recovery and purity. Moreover, the bound protein could be effectively released from the bio-nanocomposite with high activity. The bio-nanocomposite offers a very useful tool for the separation of APE1 from various complex biological samples.  相似文献   
932.
933.
934.
Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.  相似文献   
935.
936.
To investigate the role of proline in defining β turn conformations within cyclic hexa- and pentapeptides we synthesized and determined the conformations of a series of L - and D -proline-containing peptides by means of 2D NMR spectroscopy and restrained molecular dynamics simulations. Due to cis/trans isomerism the L -proline peptides adopt at least two different conformations that are analyzed and compared to the structures of the corresponding D -proline peptides. The cis conformations of the compounds cyclo(-Pro-Ala-Ala-Pro-Ala-Ala-), cyclo(-Arg-Gly-Asp-Phe-Pro-Gly-), cyclo(-Arg-Gly-Asp-Phe-Pro-Ala-), cyclo(-Pro-Ala-Ala-Ala-Ala--), and cyclo(-Pro-Ala-Pro-Ala-Ala-) form uncommon βVI turns that mimic the turn geometries found in crystallographically refined protein structures at such a detailed level that even preferred side chain orientations are reproduced. The ratios of the cis/trans isomers are analyzed in terms of the steric demand of the proline-following residue. The conformational details derived from this study illustrate the importance of the examination of small model compounds derived from protein loop regions, especially if bioactive recognition sequences, such as RGD (Arg-Gly-Asp), are incorporated. © 1993 Wiley-Liss, Inc.  相似文献   
937.
Plant growth-promoting rhizobacteria (PGPR) can help plants to resist drought stress. However, the mechanisms of how PGPR inoculation affect plant status under drought remain incompletely understood. We performed a meta-analysis of plant response to PGPR inoculation by compiling data from 57 PGPR-inoculation studies, including 2, 387 paired observations on morphological, physiological and biochemical parameters under drought and well-watered conditions. We compare the PGPR effect on plants performances among different groups of controls and treatments. Our results reveal that PGPR enables plants to restore themselves from drought-stressed to near a well-watered state, and that C4 plants recover better from drought stress than C3 plants. Furthermore, PGPR is more effective underdrought than well-watered conditions in increasing plant biomass, enhancing photosynthesis and inhibiting oxidant damage, and the responses of C4 plants to the PGPR effect was stronger than that of C3 plants under drought conditions. Additionally, PGPR belonging to different taxa and PGPR with different functional traits have varying degrees of drought-resistance effects on plants. These results are important to improve our understanding of the PGPR beneficial effects on enhanced drought-resistance of plants.  相似文献   
938.
939.
Prohibited pesticide residues have become one of the main factors affecting the quality and safety of Lycii Fructus, However, rarely studies focus on the rapid determination of these residues. Here, a total of 30 kinds of prohibited pesticide residues were determined by ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-MS/MS) in five different process ways. Pretreatment methods, chromatographic separation and detection conditions in mass spectrometry were all optimized accordingly. Among the five different pretreatment methods, the first and third solid phase extraction failed to provide high recoveries of sulfosulfuron compounds (both lower than 60%). Recovery of chlorphenamidine by the Quick Easy Cheap Effective Rugged and Safe multiresidue method (QuEChERS) was lower than 60%, which did not meet the requirements of trace determination. The concentrations of 30 prohibited pesticides residues treated by straightforward and solid phase extraction showed good linearity in their corresponding ranges, with correlation coefficients over 0.99. The average recoveries of straightforward ranged from 78.13% to 110.9%, while RSD ranged from 1.3% to 16.9%, albeit poor purification was observed. The recovery yield from solid phase extraction was between 67.75% and 103.08% with RSD value from 0.8% to 14.0%, which met the requirements of trace determination, this method has good precision and stability. These results could be employed to other Traditional Chinese Medicines (TCMs) in detecting prohibited pesticide residues.  相似文献   
940.
Yu Zai  Shaohua Liu 《Phyton》2023,92(1):225-236
Kosteletzkya virginica (K. virginica) is used for revegetation of salt-affected coastal tidal flats and as a raw material of biodiesel. K. virginica root tuber, a biowaste with low economic value, is rich in bioactive compounds. This study aimed to extract and identify flavonoids from K. virginica root tubers. The optimal extraction conditions were 1/25 (w/v) solid/liquid ratio, 40% ethanol concentration at 40°C for 60 min. Under these conditions, 65.2 ± 3.7 mg/g total flavonoid content was extracted from the roots, which were collected from salinized soil in late autumn of the third year. Antioxidant activity was evaluated through 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radical, and superoxide anion scavenging assays. The extracted flavonoids exhibited antioxidant activity in a dose-dependent manner. Five flavonoids, glucoliquiritin apioside, licoisoflavone B, 5-methoxy-7,8-diprenyl- flavone, 7,2′-dihydroxy-6,8-dimethyl-4′,5′-methylenedioxyflavan, and 5,7,4′-trihydroxy-3′-methoxy-6,8-di-Cmethylflavanone, were identified by ultra-performance liquid chromatography–tandem mass spectrometry. Our results suggest that the flavonoids of K. virginica root tubers might be potent antioxidants and can be effectively applied as an ingredient in food and natural medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号