首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   209篇
  2019年   1篇
  2018年   9篇
  2017年   82篇
  2016年   41篇
  2015年   59篇
  2014年   45篇
  2013年   79篇
  2012年   76篇
  2011年   14篇
  2009年   1篇
  2008年   6篇
  2007年   1篇
  2004年   1篇
  1998年   1篇
排序方式: 共有416条查询结果,搜索用时 93 毫秒
81.
82.
83.
84.
85.
The synthetic purine reversine has been shown to possess a dual activity as it promotes the de‐differentiation of adult cells, including fibroblasts, into stem‐cell‐like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti‐cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced. J. Cell. Biochem. 113: 3207–3217, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
86.
Uremic patients have a much higher risk of cardiovascular diseases and death. Uremic toxins are probably involved in the development of vascular endothelial dysfunction. Indoxyl sulfate (IS) is a uremic toxin that accumulates with deterioration of renal function. This study explored the effects of IS on the adherens junctions of vascular endothelial cells and revealed the underlying mechanism. Bovine pulmonary artery endothelial cells (BPAECs) were treated with IS, and the distribution of vascular endothelial cadherin (VE-cadherin), p120-catenin, β-catenin, and stress fibers was examined by immunofluorescence. IS treatment resulted in disruption of intercellular contacts between BPAECs with prominent parallel-oriented intracellular stress fiber formation. Intracellular free radical levels which measured by flow cytometry increased after IS treatment. The antioxidant, MnTMPyP, and an ERK pathway inhibitor, U0126, both significantly prevented IS-induced disruption of intercellular contacts. Western blotting analyses demonstrated that IS-induced phosphorylation of myosin light chain kinase (MLCK) and myosin light chains (MLC) as well as activation of extracellular-signal-regulated protein kinase (ERK1/ERK2). Pretreatment with MnTMPyP prevented ERK1/2 phosphorylation. U0126 prevented the IS-induced MLCK and MLC phosphorylation. MEK-ERK acted as the upstream regulator of the MLCK-MLC pathway. These findings suggest that the superoxide anion-MEK-ERK-MLCK-MLC signaling mediates IS-induced junctional dispersal of BPAECs.  相似文献   
87.
88.
The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo‐, chondro‐, and adipo‐lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy. J. Cell. Biochem. 113: 3153–3164, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
89.
Osteosarcoma is a devastating tumor of bone, primarily affecting adolescents. Osteosarcoma tumors are notoriously radioresistant. Radioresistant cancers, including osteosarcoma, typically exhibit a considerable potential for relapse and development of metastases following treatment. Relapse and metastatic potential can, in part, be due to a specific radioresistant subpopulation of cells with stem-like characteristics, cancer stem cells, which maintain the capacity to regenerate entire tumors. In the current study, we have investigated whether in vitro treatments with parthenolide, a naturally occurring small molecule that interferes with NF-κB signaling and has various other effects, will re-sensitize cancer stem cells and the entire cell population to radiotherapy in osteosarcoma. Our results indicate that parthenolide and ionizing radiation synergistically induce cell death in LM7 osteosarcoma cells. Importantly, the combination treatment results in a significant reduction in the viability of both the overall population of osteosarcoma cells and the cancer stem cell subpopulation. This effect is dependent on the ability of parthenolide to induce oxidative stress. Therefore, as a supplement to current multimodal therapy, parthenolide may sensitize osteosarcoma tumors to radiation and greatly reduce the prevalence of relapse and metastatic progression.  相似文献   
90.
We have previously demonstrated that in renal cortical collecting duct cells (RCCD1) the expression of the water channel Aquaporin 2 (AQP2) raises the rate of cell proliferation. In this study, we investigated the mechanisms involved in this process, focusing on the putative link between AQP2 expression, cell volume changes, and regulatory volume decrease activity (RVD). Two renal cell lines were used: WT‐RCCD1 (not expressing aquaporins) and AQP2‐RCCD1 (transfected with AQP2). Our results showed that when most RCCD1 cells are in the G1‐phase (unsynchronized), the blockage of barium‐sensitive K+ channels implicated in rapid RVD inhibits cell proliferation only in AQP2‐RCCD1 cells. Though cells in the S‐phase (synchronized) had a remarkable increase in size, this enhancement was higher and was accompanied by a significant down‐regulation in the rapid RVD response only in AQP2‐RCCD1 cells. This decrease in the RVD activity did not correlate with changes in AQP2 function or expression, demonstrating that AQP2—besides increasing water permeability—would play some other role. These observations together with evidence implying a cell‐sizing mechanism that shortens the cell cycle of large cells, let us to propose that during nutrient uptake, in early G1, volume tends to increase but it may be efficiently regulated by an AQP2‐dependent mechanism, inducing the rapid activation of RVD channels. This mechanism would be down‐regulated when volume needs to be increased in order to proceed into the S‐phase. Therefore, during cell cycle, a coordinated modulation of the RVD activity may contribute to accelerate proliferation of cells expressing AQP2. J. Cell. Biochem. 113: 3721–3729, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号