首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   35篇
  国内免费   10篇
  2023年   5篇
  2022年   2篇
  2021年   6篇
  2020年   10篇
  2019年   17篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   14篇
  2014年   14篇
  2013年   18篇
  2012年   14篇
  2011年   10篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   4篇
  2006年   9篇
  2005年   13篇
  2004年   4篇
  2003年   1篇
  2002年   6篇
  2001年   5篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
  1985年   2篇
  1983年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
71.
How are proliferation and differentiation of melanocytes regulated?   总被引:1,自引:0,他引:1  
Coat colors are determined by melanin (eumelanin and pheomelanin). Melanin is synthesized in melanocytes and accumulates in special organelles, melanosomes, which upon maturation are transferred to keratinocytes. Melanocytes differentiate from undifferentiated precursors, called melanoblasts, which are derived from neural crest cells. Melanoblast/melanocyte proliferation and differentiation are regulated by the tissue environment, especially by keratinocytes, which synthesize endothelins, steel factor, hepatocyte growth factor, leukemia inhibitory factor and granulocyte-macrophage colony-stimulating factor. Melanocyte differentiation is also stimulated by alpha-melanocyte stimulating hormone; in the mouse, however, this hormone is likely carried through the bloodstream and not produced locally in the skin. Melanoblast migration, proliferation and differentiation are also regulated by many coat color genes otherwise known for their ability to regulate melanosome formation and maturation, pigment type switching and melanosome distribution and transfer. Thus, melanocyte proliferation and differentiation are not only regulated by genes encoding typical growth factors and their receptors but also by genes classically known for their role in pigment formation.  相似文献   
72.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.  相似文献   
73.
The aim of present study was to evaluate CD4+/CD8+ ratio and CD4+CD25hiFoxP3+ Tregs in GV patients with reference to their effect on disease onset and progression. Flow cytometry was used for determination of CD4+/CD8+ ratio and Tregs in 82 patients and 50 controls. CD8+ T‐cell counts were significantly higher in GV patients as compared with controls (p = 0.003). Active GV patients showed higher CD8+ T‐cell counts compared with stable GV patients (p = 0.001). The CD4+/CD8+ ratio decreased significantly in patients as compared with controls (p = 0.001). Moreover, the ratio in active GV patients significantly lowered as compared with stable GV patients (p = 0.002). Significant decrease in Treg cell percentage and counts in GV patients was observed compared with controls (p = 0.009, p = 0.008) with significant reduction in FoxP3 expression (p = 0.024). Treg cell percentage and counts were significantly decreased in active GV patients compared with stable GV patients (p = 0.007, p = 0.002). Our results suggest that an imbalance of CD4+/CD8+ ratio and natural Tregs in frequency and function might be involved in the T‐cell mediated pathogenesis of GV and its progression.  相似文献   
74.
Purpose: Monosomy 3 (M3) in uveal melanoma (UM) obtained after enucleation is significantly associated with metastatic death. With improved biopsy techniques, samples from patients treated with eye-preserving methods have become available. As the choice of treatment depends on tumour size, patients treated with eye-preserving brachytherapy tend to have smaller tumours. It has to be determined if M3 is a valid marker for prognosis of these patients.

Methods: Follow-up and clinical data were collected from a total of 451 UM patients: 291 patients were treated by brachytherapy. Tumour tissue was sampled by transretinal biopsy using the 23-gauge Essen biopsy forceps prior to therapy in 114 of them. Chromosome 3 status was determined by microsatellite analysis. Data were compared to those from 160 patients treated by enucleation.

Results: Chromosome 3 status correlates significantly with disease-related survival in both patient groups. The proportion of tumours with M3 is lower in the brachytherapy group compared to patients treated with enucleation (25/77 32% and 102/144 71%, respectively).

Conclusions: M3 is a valid marker for poor prognosis in uveal melanoma later treated by brachytherapy. The higher proportion of D3 tumours might explain, at least in part, the more favourable prognosis of patients treated by brachytherapy.  相似文献   

75.
The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt). We demonstrate that agouti signalling protein (ASIP) is an inverse agonist to the MC1R-wt but is an agonist to the MC1RΔ24. We conclude that the deletion in the MC1RΔ24 leads to a receptor with a high basal activity which is further activated by ASIP. This is the first report of ASIP acting as an agonist to MC1R.  相似文献   
76.
Human skin hyperpigmentation disorders occur when the synthesis and/or distribution of melanin increases. The distribution of melanin in the skin is achieved by melanosome transport and transfer. The transport of melanosomes, the organelles where melanin is made, in a melanocyte precedes the transfer of the melanosomes to a keratinocyte. Therefore, hyperpigmentation can be regulated by decreasing melanosome transport. In this study, we found that an extract of Saururus chinensis Baill (ESCB) and one of its components, manassantin B, inhibited melanosome transport in Melan‐a melanocytes and normal human melanocytes (NHMs). Manassantin B disturbed melanosome transport by disrupting the interaction between melanophilin and myosin Va. Manassantin B is neither a direct nor an indirect inhibitor of tyrosinase. The total melanin content was not reduced when melanosome transport was inhibited in a Melan‐a melanocyte monoculture by manassantin B. Manassantin B decreased melanin content only when Melan‐a melanocytes were co‐cultured with SP‐1 keratinocytes or stimulated by α‐MSH. Therefore, we propose that specific inhibitors of melanosome transport, such as manassantin B, are potential candidate or lead compounds for the development of agents to treat undesirable hyperpigmentation of the skin.  相似文献   
77.
Interactions between melanocytes and neighboring cells in the skin (keratinocytes and fibroblasts) play important roles in regulating human skin color. We recently reported that neuregulin-1 (NRG1) is highly expressed in fibroblasts from Fitzpatrick type VI skin (the darkest) and at least in part determines the constitutive color of human skin. We have now characterized the bioactive motif of NRG1 that is involved in modulating melanin production in human melanocytes. We found that 8-mer motifs (PSRYLCKC and LCKCPNEF) increased melanin production but did not increase the proliferation of melanocytes; the minimum fragment that could elicit that effect was the tetrapeptide LCKC. This smaller bioactive peptide might have an advantage in clinical applications in which it modulates only pigmentation and does not stimulate melanocyte proliferation.  相似文献   
78.
The mitogen-activated protein kinase (MAPK) pathway is important in melanoma. In this pathway, DUSP6 phosphatase negatively controls the activation of extracellular signal-regulated (ERK) kinase. Through comparison of melanoma signalling pathways between immortal mouse melanocytes and their tumourigenic derivatives, retrieved from mouse xenografts, we identified a molecularly distinct subtype of melanoma, characterized by reduced ERK activity and increased DUSP6 expression. Overexpression of DUSP6 enhanced anchorage-independent growth and invasive ability of immortal mouse melanocytes, suggesting that increased DUSP6 expression contributes to melanoma formation in the mouse xenografts. In contrast, reduced tumourigenicity was observed after DUSP6 overexpression in human melanoma cells. A minority of thick human primary melanomas had high DUSP6 expression and the same poor melanoma-specific survival as the majority of thick primaries with low DUSP6 levels. We have demonstrated that DUSP6 is important in melanoma and that it plays a different role in our distinct subtype of mouse melanoma compared with that in classic human melanoma.  相似文献   
79.
Melanocytes are pigment cells that are closely associated with many skin disorders, such as vitiligo, piebaldism, Waardenburg syndrome, and the deadliest skin cancer, melanoma. Through studies of model organisms, the genetic regulatory network of melanocyte development during embryogenesis has been well established. This network also seems to be shared with adult melanocyte regeneration and melanoma formation. To identify chemical regulators of melanocyte development and homeostasis, we screened a small-molecule library of 6000 compounds using zebrafish embryos and identified five novel compounds that inhibited pigmentation. Here we report characterization of two compounds, 12G9 and 36E9, which disrupted melanocyte development. TUNEL assay indicated that these two compounds induced apoptosis of melanocytes. Furthermore, compound 12G9 specifically inhibited the viability of mammalian melanoma cells in vitro. These two compounds should be useful as chemical biology tools to study melanocytes and could serve as drug candidates against melanocyte-related diseases.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号