首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   99篇
  国内免费   89篇
  2024年   3篇
  2023年   10篇
  2022年   34篇
  2021年   25篇
  2020年   38篇
  2019年   75篇
  2018年   53篇
  2017年   25篇
  2016年   44篇
  2015年   41篇
  2014年   111篇
  2013年   113篇
  2012年   82篇
  2011年   118篇
  2010年   74篇
  2009年   71篇
  2008年   95篇
  2007年   93篇
  2006年   85篇
  2005年   81篇
  2004年   60篇
  2003年   50篇
  2002年   49篇
  2001年   39篇
  2000年   19篇
  1999年   17篇
  1998年   34篇
  1997年   26篇
  1996年   19篇
  1995年   21篇
  1994年   21篇
  1993年   15篇
  1992年   12篇
  1991年   17篇
  1990年   12篇
  1989年   8篇
  1988年   5篇
  1987年   5篇
  1986年   8篇
  1985年   13篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1979年   6篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
排序方式: 共有1768条查询结果,搜索用时 15 毫秒
71.
72.
73.
The increased activation of osteoclasts is the major manifestation of several lytic bone diseases, including osteoporosis, rheumatoid arthritis, aseptic loosening of orthopedic implants, Paget disease and malignant bone diseases. One important bone-protective therapy in these diseases focuses on the inhibition of osteoclast differentiation and resorptive function. Given that the deleterious side-effects of currently available drugs, it is beneficial to search for effective and safe medications from natural compounds. Cepharanthine (CEP) is a compound extracted from Stephania japonica and has been found to have antioxidant and anti-inflammatory effects. In this study, we found that CEP inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone-resorbing activities using osteoclastogenesis and bone resorption assay. By polymerase chain reaction, we also found that CEP inhibited the expression of osteoclast-differentiation marker genes including Ctsk, Calcr, Atp6v0d2, Mmp9 and Nfatc1. Mechanistic analyses including Western blot and luciferase reporter assay revealed that CEP inhibited RANKL-induced activation of NF-κB and nuclear factor of activated T-cell, which are essential for the formation of osteoclast. Collectively, these data suggested that CEP can potentially be used as an alternative therapy for preventing or treating osteolytic diseases.  相似文献   
74.
The β2-adrenergic receptor (β2-AR) signaling on bone cells is the major contributor in the effect of the sympathetic nervous system on bone turnover. However, it remains unclear whether receptor activator of nuclear factor κ-Β ligand (RANKL) modulation and neuropeptides expression in osteocytes are responsible for the mechanism. This study used β2-AR stimulation to investigate cell cycle and proliferation, the gene and protein expression of RANKL, and osteoprotegerin (OPG), as well as neuropeptides regulation in osteocytic MLO-Y4 cells. Clenbuterol (CLE; a β2-AR agonist) slightly promoted the growth of MLO-Y4 cells in a concentration-dependent effect but had no effect on the proliferation index. And the concentration of 10−8 M showed a significant increase in the S-phase fraction on day 3 in comparison with the control. Additionally, CLE-promoted osteoclast formation and bone resorption in osteocytic MLO-Y4 cell-RAW264.7 cell cocultures. RANKL expression level and the ratio of RANKL to OPG in MLO-Y4 cells were enhanced in CLE treatment but were rescued by blocking β2-AR signaling. However, neuropeptide Y and α-calcitonin gene-related peptide, two neurogenic markers, were inhibited in CLE treatment of MLO-Y4 cells, which was reversed by a β2-AR blocker. The results indicate that osteocytic β2-AR plays an important role in the regulation of RANKL/OPG and neuropeptides expression, and β2-AR signaling in osteocytes can be used as a new valuable target for osteoclast-related pathologic disease.  相似文献   
75.
76.
77.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
78.
酒精性肝病(alcoholic liver disease,ALD)是由于长期过量饮酒导致肝的内部组织发生炎症损伤的慢性肝病.乙醇及其衍生物在代谢过程中直接或间接诱导引起的肝炎症反应可能是ALD发病的重要机制.然而,该过程内在的细胞分子机制尚不明确.最新研究发现,白细胞介素-6(interleukin-6,IL-6)对...  相似文献   
79.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号