首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  21篇
  2018年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
11.
12.
Retinoids in the organs (gonad [GND], body wall muscle [BWM], hepatopancreas [HP], gill, hemolymph cells and hemolymph plasma) of the adult ascidian Halocynthia roretzi were analyzed by high performance liquid chromatography. Retinal (RAL) occurred in every organ examined, and most of RAL (≥99%) was localized in the GND and BWM. None of the organs contained significant amounts of retinol (ROL) or retinyl ester (RE). Lipid droplets, which are characteristic of stellate cells (RE-storing cells of vertebrates), could not be found in the GND, BWM and HP by microscopic observations. These results indicate that this ascidian lacks the RE-storing mechanism, which is ubiquitous in adult vertebrates. The amount and localization of RAL showed the annual change in relation to the reproductive cycle. During summer, the growing season, RAL was present in both GND and BWM at a ratio of about 3:2. From summer to winter, RAL in the GND gradually increased, concomitant with the decrease of RAL in the BWM. In winter, the spawning season, most of RAL was present in the GND (ca. 98%). RAL appears to be accumulated first in the BWM and transported to oocytes accompanying yolk accumulation. ROL and RE were not implicated in the storage and transport of retinoids. The results in the present research strongly suggest that retinoic acid (RA) is produced by the two-step enzymatic reaction: carotenoid cleavage to RAL followed by RAL oxidation to RA and that the prevertebrate chordate lacks ROL-metabolizing systems.  相似文献   
13.
Summary The ascidians Styela plicata, S. clava, and Mogula citrina are urochordates. The larvae of urochordates are considered to morphologically resemble the ancestral vertebrate. We asked whether larval and adult ascidian muscle actin sequences are nonmusclelike as in lower invertebrates, musclelike as in vertebrates, or possess characteristics of both. Nonmuscle and muscle actin cDNA clones from S. plicata were sequenced. Based on 27 diagnostic amino acids, which distinguish vertebrate muscle actin from other actins, we found that the deduced protein sequences of ascidian muscle actins exhibit similarities to both invertebrate and vertebrate muscle actins. A comparison to muscle actins from different vertebrate and invertebrate phylogenetic groups suggested that the urochordate muscle actins represent a transition from a nonmusclelike sequence to a vertebrate musclelike sequence. The ascidian adult muscle actin is more similar to skeletal actin and the larval muscle actin is more similar to cardiac actin, which indicates that the divergence of the skeletal and cardiac isoforms occurred before the emergence of urochordates. The muscle actin gene may be a powerful probe for investigating the chordate lineage. Offprint requests to: C.R. Tomlinson  相似文献   
14.
Thomas Stach 《Zoomorphology》2007,126(3):203-214
Appendicularians have always occupied a central role in considerations of tunicate and chordate evolution. Two hypotheses have been proposed – one holds that appendicularia represents the sister taxon to the remaining tunicates, the other suggests that appendicularians were derived from an ascidian-like ancestor. In the present study I report results from electron microscopic investigation of larval tunicates including the first electron microscopic investigation of the tail of the early ontogenetic appendicularian “Streckform” and discuss their phylogenetic implications. The early “Streckform” of Oikopleura dioica Fol, 1872 is invested with an extracellular covering that consists of an inner electron-light layer and an electron-dense outermost layer. In addition, the extracellular covering forms fin blades. Because these traits are shown to be similar to the tunic of different ascidian larvae, the extracellular covering in early appendicularian embryos is suggested to be homologous to the larval tunic of ascidian larvae. Overall, the tail of early developmental stages of appendicularians consists of a mosaic of apomorphic and plesiomorphic features. The straight, continuous endodermal strand was inherited from a common chordate ancestor whereas the finlets of larvae, consisting of extracellular material, were inherited from a common tunicate ancestor. The horizontal orientation of the tail as a whole was inherited from the last common ancestor of appendicularians and aplousobranch ascidians, and the discovered floating extension at the posterior tip of the tail is unique to the holoplanktonic Oikopleura dioica. These findings support the hypothesis that Appendicularia is derived from a sessile, ascidian-like ancestor.  相似文献   
15.
The survival of animal tissues and organs is controlled through both activation and suppression of programmed cell death. In the colonial urochordate Botryllus schlosseri, the entire parental generation of zooids in a colony synchronously dies every week as the asexually derived generation of buds reaches functional maturity. This process, called takeover, involves massive programmed cell death (PCD) of zooid organs via apoptosis followed by programmed removal of cell corpses by blood phagocytes within approximately 1 day. We have previously reported that developing buds in conjunction with circulating phagocytes are key effectors of zooid resorption and macromolecular recycling during takeover, and as such engineer the reconstitution of a functional asexual generation every week [Lauzon, R.J., Ishizuka, K.J., Weissman, I.L., 2002. Cyclical generation and degeneration of organs in a colonial urochordate involves crosstalk between old and new: a model for development and regeneration. Dev. Biol. 249, 333-348]. Here, we demonstrate that zooid lifespan during cyclic blastogenesis is regulated by two independent signals: a bud-independent signal that activates zooid PCD and a bud-dependent, survival signal that acts in short-range fashion via the colonial vasculature. As zooids represent a transient, mass-produced commodity during Botryllus asexual development, PCD regulation in this animal via both activation and suppression enables it to remove and recycle its constituent zooids earlier when intra-colony resources are low, while maintaining the functional filter-feeding state when resources are adequate. We propose that this crosstalk mechanism between bud and parent optimizes survival of a B. schlosseri colony with each round of cyclic blastogenesis.  相似文献   
16.
Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa+/Pl10+/Oct4+ and 6-12 μm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as ‘budlet niche’, and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.  相似文献   
17.
In non-vertebrate chordates, central nervous system (CNS) development has been studied in only two taxa, the Cephalochordata and a single Class (Ascidiacea) of the morphologically diverse Urochordata. To understand development and molecular regionalization of the brain in a different deeply diverging chordate clade, we isolated and determined the expression patterns of orthologs of vertebrate CNS markers (otxa, otxb, otxc, pax6, pax2/5/8a, pax2/5/8b, engrailed, and hox1) in Oikopleura dioica (Subphylum Urochordata, Class Larvacea). The three Oikopleura otx genes are expressed similarly to vertebrate Otx paralogs, demonstrating that trans-homologs converged on similar evolutionary outcomes by independent neo- or subfunctionalization processes during the evolution of the two taxa. This work revealed that the Oikopleura CNS possesses homologs of the vertebrate forebrain, hindbrain, and spinal cord, but not the midbrain. Comparing larvacean gene expression patterns to published results in ascidians disclosed important developmental differences and similarities that suggest mechanisms of development likely present in their last common ancestor. In contrast to ascidians, the lack of a radical reorganization of the CNS as larvaceans become adults allows us to relate embryonic gene expression patterns to three subdivisions of the adult anterior brain. Our study of the Oikopleura brain provides new insights into chordate CNS evolution: first, the absence of midbrain is a urochordate synapomorphy and not a peculiarity of ascidians, perhaps resulting from their drastic CNS metamorphosis; second, there is no convincing evidence for a homolog of a midbrain-hindbrain boundary (MHB) organizer in urochordates; and third, the expression pattern of "MHB-genes" in the urochordate hindbrain suggests that they function in the development of specific neurons rather than in an MHB organizer.  相似文献   
18.
The sensory vesicle of ascidians is thought to be homologous to the vertebrate forebrain and midbrain (Development 125 (1998) 1113). Here we report the isolation of two sensory vesicle markers in the ascidian Ciona intestinalis, which are homologs of vertebrate otx and gsx homeobox genes. By using these markers to analyze the induction of anterior neural tissue in Ciona, we find that the restriction of anterior neural fate to the progeny of the anterior animal blastomeres is due to a combination of two factors. The vegetal blastomeres show a differential inducing activity along the anterior-posterior axis, while the competence to respond to this inducing signal is markedly higher in the anterior animal blastomeres than in the posterior animal blastomeres. This differential competence to respond is also observed in response to bFGF, a candidate neural inducer in ascidians (J. Physiol. 511.2 (1998) 347) and can be detected by the gastrula stage. Our results, however, indicate that bFGF can only induce a subset of the responses of the endogenous inducer, suggesting that additional signals in the embryo are necessary to induce a fully patterned nervous system.  相似文献   
19.
Incorporation of the thymidine analog bromodeoxyuridine (BrdU) was used to assess cytogenesis in the central nervous system (CNS) of the appendicularian Oikopleura dioica. A series of timed cumulative labelings carried out from 45 minutes (min) to 8 hours (h) after fertilization provided labeling patterns that showed when neurons and support cells residing at specific sites within the 9 h CNS became postmitotic. Throughout the CNS, which includes the cerebral ganglion, caudal ganglion and caudal nerve cord, neurogenesis occurs during an earlier time window than the genesis of support cells. Neurons are first generated at about 45 min to 1 h after fertilization in all 3 CNS regions, starting in the cerebral ganglion. Support cells are generated starting at about 2 h after fertilization. In both the cerebral ganglion and the caudal ganglion, neurons born during different time epochs settle in a specific spatial pattern, following a caudal to rostral gradient in the caudal ganglion and a more complex pattern in the cerebral ganglion. No such regional pattern was seen in the caudal nerve cord, where neurons born during different epochs were evenly distributed along the length of the cord. In the cerebral ganglion a small subpopulation of cells continued to incorporate BrdU from 8 h to at least 15 h and may represent a reserve of stem cells or progenitor cells that generate additional cells seen in the adult. The results show that this simple urochordate exhibits several vertebrate features of CNS cytogenesis, including a different timing of neurogenesis and gliogenesis (support cells being the likely candidates for glial cells in Oikopleura), gradients of neuron position according to birthdate, and a maintenance of neural cell precursors beyond embryonic and larval stages.  相似文献   
20.
To elucidate the evolution of the complement system and MHC class III region, we analyzed the complement factor B (Bf) genes of a urochordate ascidian, Ciona intestinalis. Three different cDNA species, termed CiBf-1, CiBf-2 and CiBf-3, were identified. The deduced amino-acid sequences all contained the usual domains of vertebrate Bf and, in addition, three extra domains at the N-terminus. Furthermore, the serine protease domain of these CiBfs shared unique features with vertebrate complement components C1r/s and mannose-binding lectin-associated serine protease (MASP)-2/3, the absence of the disulfide bond designated histidine loop, and the usage of the AGY codon for the catalytic serine residue. These results indicate that complement genes have evolved through extensive exon shuffling events in the early stage of chordate evolution. Overall deduced amino-acid identity between CiBf-1 and -2 was 88%, whereas CiBf-3 showed 49% identity to both CiBf-1 and CiBf-2. These three CiBf genes were located within an approximately 50-kb genomic region, and exons 3 and 5 of all the three Bf genes showed an extremely high degree of nucleotide identity, indicating that the CiBf genes experienced extensive reorganization, such as duplication and gene conversion, since its divergence from the vertebrate Bf/C2 gene. Fluorescent in situ hybridization (FISH) to the chromosomes showed that genetic loci for the CiBfs, CiC3-1 and CiC3-2 genes are present on three different chromosomes, suggesting the possibility that the linkage among the MHC class III complement genes was established in the vertebrate lineage after its divergence from urochordates.The sequences reported in this paper have been deposited in the DDBJ database (accession nos. AB180044–AB180051).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号