首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47559篇
  免费   3386篇
  国内免费   3628篇
  54573篇
  2024年   148篇
  2023年   865篇
  2022年   1088篇
  2021年   1402篇
  2020年   1523篇
  2019年   1914篇
  2018年   1710篇
  2017年   1373篇
  2016年   1438篇
  2015年   1477篇
  2014年   2406篇
  2013年   3101篇
  2012年   1947篇
  2011年   2362篇
  2010年   2528篇
  2009年   2141篇
  2008年   2187篇
  2007年   2365篇
  2006年   2126篇
  2005年   2141篇
  2004年   1989篇
  2003年   1718篇
  2002年   1336篇
  2001年   1126篇
  2000年   904篇
  1999年   985篇
  1998年   863篇
  1997年   768篇
  1996年   817篇
  1995年   802篇
  1994年   732篇
  1993年   749篇
  1992年   673篇
  1991年   588篇
  1990年   507篇
  1989年   497篇
  1988年   467篇
  1987年   345篇
  1986年   344篇
  1985年   328篇
  1984年   360篇
  1983年   169篇
  1982年   260篇
  1981年   210篇
  1980年   198篇
  1979年   149篇
  1978年   120篇
  1977年   85篇
  1976年   80篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The significance of actin-related protein 2/3 complex subunit 4 (ARPC4) expression in bladder cancer, and its potential role in the invasion and migration of bladder cancer cells, has yet to be determined. This study was to identify the correlation between ARPC4 and lymph node metastasis, and to determine the role of ARPC4 in the invasive migration of T24 bladder cancer cells. One hundred and ninety-eight bladder cancer tissues and 40 normal bladder and lymph node tissues were examined. Tissue microarrays were constructed and subjected to immunohistochemical stating for ARPC4. Multiple logistic analysis was used to determine risk factors associated with bladder cancer metastasis. ARPC4 expression in T24 bladder cancer cells was suppressed using small interfering RNA and changes in protein levels were determined by Western blot analysis. The proliferation of bladder cancer cells after knocking down of ARPC4 was determined by cell counting kit-8. The effects of ARPC4 knockdown on T24 cell invasion and migration was determined using transwell and wound healing assays. Immunofluorescence analysis was performed to examine changes in pseudopodia formation and actin cytoskeleton structure. The expression of ARPC4 was elevated in bladder cancer tissues than normal tissues (84.3% vs 27.5%, P < 0.001). The multivariate logistic analysis demonstrated that the level of ARPC4, as a risk factor, was correlated with lymphatic metastasis (P < 0.05). ARPC4 knockdown attenuated proliferation, migration, invasion, and pseudopodia formation in T24 cells. ARPC4 expression, as a risk factor, is associated with lymphatic metastasis and is upregulated in bladder cancer tissues in comparison with normal tissues. Inhibition of ARPC4 expression significantly attenuates the proliferation, migration, and invasion of bladder cancer cell, possibly due to defects in pseudopodia formation.  相似文献   
992.
Escherichia coli is frequently exploited for genetic manipulations and heterologous gene expression studies. We have evaluated the metabolic profile of E. coli strain BL21 (DE3) RIL CodonPlus after genetic modifications and subjecting to the production of recombinant protein. Three genetically variable E. coli cell types were studied, normal cells (susceptible to antibiotics) cultured in simple LB medium, cells harboring ampicillin-resistant plasmid pET21a (+), grown under antibiotic stress, and cells having recombinant plasmid pET21a (+) ligated with bacterial lactate dehydrogenase gene grown under ampicillin and standard isopropyl thiogalactoside (IPTG)-induced gene expression conditions. A total of 592 metabolites were identified through liquid chromatography-mass spectrometry/mass spectrometry analysis, feature and peak detection using XCMS and CAMERA followed by precursor identification by METLIN-based procedures. Overall, 107 metabolites were found differentially regulated among genetically modified cells. Quantitative analysis has shown a significant modulation in DHNA-CoA, p-aminobenzoic acid, and citrulline levels, indicating an alteration in vitamin K, folic acid biosynthesis, and urea cycle of E. coli cells during heterologous gene expression. Modulations in energy metabolites including NADH, AMP, ADP, ATP, carbohydrate, terpenoids, fatty acid metabolites, diadenosine tetraphosphate (Ap4A), and l -carnitine advocate major metabolic rearrangements. Our study provides a broader insight into the metabolic adaptations of bacterial cells during gene manipulation experiments that can be prolonged to improve the yield of heterologous gene products and concomitant production of valuable biomolecules.  相似文献   
993.
Long noncoding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of small nucleolar RNA host gene 16 (SNHG16) for regulating the cell cycle and epithelial to mesenchymal transition (EMT) remain elusive. In this study, SNHG16 expression profiles of HCC tissues or cell lines were compared with those of normal tissues or hepatocyte cell line. The effect of SNHG16 knockdown in HCC cell lines was investigated by using in vitro loss-of-function experiments and in vivo nude mouse experiments. The potential molecular regulatory mechanism of SNHG16 in HCC progression was investigated by using mechanistic experiments and rescue assays. The results revealed that SNHG16 was highly expressed in HCC tissues and cell lines, which predicted poor prognosis of HCC patients. On one hand, the downregulation of SNHG16 induced G2/M cell cycle arrest, inducing cell apoptosis and suppression of cell proliferation. On the other hand, it inhibited cell metastasis and EMT progression demonstrated by in vitro loss-of-function cell experiments. Besides, knockdown of SNHG16 increased the sensitivity of HCC cells to cisplatin. For the detailed mechanism, SNHG16 was demonstrated to act as a let-7b-5p sponge in HCC. SNHG16 facilitated the G2/M cell cycle transition by directly acting on the let-7b-5p/CDC25B/CDK1 axis, and promoted cell metastasis and EMT progression by regulating the let-7b-5p/HMGA2 axis in HCC. In addition, the mechanism of SNHG16 for regulating HCC cell proliferation and metastasis was further confirmed in vivo by mouse experiments. Furthermore, these results can provide new insights into HCC treatment and its molecular pathogenesis, which may enlighten the further research of the molecular pathogenesis of HCC.  相似文献   
994.
995.
996.
The mortality rate of pancreatic cancer has close parallels to its incidence rate because of limited therapeutics and lack of effective prognosis. Despite various novel chemotherapeutics combinations, the 5-year survival rate is still under 5%. In the current study, we aimed to modulate the aberrantly activated PI3K/AKT pathway and epithelial-mesenchymal transition (EMT) signaling with the treatment of CDK4/6 inhibitor PD-0332991 (palbociclib) in Panc-1 and MiaPaCa-2 pancreatic cancer cells. It was found that PD-0332991 effectively reduced cell viability and proliferation dose-dependently within 24 hours. In addition, PD-0332991 induced cell cycle arrest at the G1 phase by downregulation of aberrant expression of CDK4/6 through the dephosphorylation of Rb in each cell lines. Although PD-0332991 treatment increased epithelial markers and decreased mesenchymal markers, the nuclear translocation of β-catenin was not prevented by PD-0332991 treatment, especially in MiaPaCa-2 cells. Effects of PD-0332991 on the regulation of PI3K/AKT signaling and its downstream targets such as GSK-3 were cell type-dependent. Although the activity of AKT was inhibited in both cell lines, the phosphorylation of GSK-3β at Ser9 increased only in Panc-1. In conclusion, PD-0332991 induced cell cycle arrest and reduced the cell viability of Panc-1 and MiaPaCa-2 cells. However, PD-0332991 differentially affects the regulation of the PI3K/AKT pathway and EMT process in cells due to its distinct influence on Rb and GSK-3/β-catenin signaling. Understanding the effect of PD-0332991 on the aberrantly activated signaling axis may put forward a new therapeutic strategy to reduce the cell viability and metastatic process of pancreatic cancer.  相似文献   
997.
Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA–mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.  相似文献   
998.
Abstract

Two new nickel (II) triphenylphosphine complexes derived from tridentate aroylhydrazone ligands [H2L1 = 2-hydroxy-3-methoxybenzylidene)benzohydrazone and H2L2 = N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone] and triphenylphosphine were prepared and their molecular structures were determined by single crystal X-ray diffraction analysis. Both nickel(II) complexes showed slightly distorted square planar geometry with one tridentate aroylhydrazone ligand coordinated through ONO donor atoms and one triphenylphosphine ligand coordinated to the nickel center through the phosphorus atom. DNA interaction studies indicated that both complexes possessed higher affinity to herring sperm DNA (HS-DNA) than the corresponding free aroylhydrazone ligand. Molecular docking investigations showed that both complexes could bind to DNA through intercalation of the phenyl rings between adjacent base pairs in the double helix. Meanwhile, bovine serum albumin (BSA) binding studies revealed the complexes could effectively interact with BSA and change the secondary structure of BSA. Further pharmacological evaluations of the synthesized complexes by in vitro antioxidant assays demonstrated high antioxidant activity against NO· and O2˙? radicals. The anticancer activity of each complex was assessed through in vitro cytotoxicity assays (CCK-8 kit) toward A549 and MCF-7 cancer cell and normal L-02 cell lines. Significantly, the Ni(II) complex derived from H2L1 ligand was found to be more effective cytotoxic toward MCF-7cancerous cell with the IC50 value equaled 9.7?μM, which showed potent cytotoxic activity over standard drug cisplatin.

Abbreviations A549 human lung carcinoma cell

BSA bovine serum albumin

CCK-8 Cell Counting Kit-8

DFT density functional theory

DNA deoxyribonucleic acid

DPPH˙ 2,2-diphenyl-1-picrylhydrazyl

H2L1 2-hydroxy-3-methoxybenzylidene)benzohydrazone N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone

H2L2 N′-(2-hydroxy-3-methoxybenzylidene)-2-hydroxybenzoylhydrazone

HOMO highest occupied molecular orbital

IC50 the 50% activity

L-02 human normal liver cell

LOMO lowest unoccupied molecular orbital (LUMO)

MCF-7 human breast carcinoma cell

NO˙ nitric oxide

O2˙? superoxide anion

SOD superoxide dismutase

Communicated by Ramaswamy H. Sarma  相似文献   
999.
The essential oil of the fresh leaves of Platycladus orientalis (L.), grown in four different biogeographic zones of Jordan,- (the Mediterranean, Irano-Turanian, Saharo-Arabian, and Sudanian penetration) -, were obtained by hydrodistillation and analysed by gas chromatography (GC) and gas chromatography-mass-spectrometry (GC/MS). The actual composition of the spontaneous emitted volatiles was obtained using the solid-phase-micro-extraction (SPME) method and investigated using the same chromatographic and spectroscopic methods. Hydrocarbon monoterpenes dominated the hydrodistilled oils and emissions of all regions. Bicyclic monoterpenes (sabinene, α-pinene, and α-thujene) and monocyclic α-terpinene were detected as the major constituents of the oils and emissions. Additionally, hierarchical cluster analysis (HCA) revealed that the clustering is based on the region of collection rather than the applied methodology. Differences were observed in the quantity of the obtained oils (P-values <0.01); the highest amount of volatile oil was obtained from samples grown in the Irano-Turanian biogeographic zone.  相似文献   
1000.
The dysregulation of Long noncoding RNAs (lncRNAs) has been implicated in many cardiovascular diseases, including cardiac fibrosis. However, the functions and mechanisms of lncRNAs in cardiac fibroblasts (CFs) have not been fully elucidated. First, we observed a correlation between cardiac remodeling (CR) and lncRNA FAF (FGF9-associated factor, termed FAF) expression in the heart. In vitro, we found that the expression of lncRNA FAF was altered in CFs, whereas it behaved inconsistently in cardiomyocytes (CMs). Next, we investigated the effects of lncRNA FAF on angiotensinogen II (Ang II)-induced cardiac fibrosis in neonatal rat CFs and explored the mechanism underlying these effects. In this study, lncRNA FAF was enriched in CFs and was associated with cardiac fibrosis. Upregulation of lncRNA FAF significantly restrained Ang II-induced increases in cell proliferation, differentiation and collagen accumulation of CFs. Moreover, we found that the function of lncRNA FAF was mainly realized through Transforming growth factor β1 (TGFβ1) secretion and then downregulated phosphorylation of Smad2/3. Additional analysis revealed that Fibroblast growth factor 9 (FGF9) is a direct target of lncRNA FAF, as the overexpression of lncRNA FAF could increase the expression of FGF9 and knockdown of the FGF9 expression could attenuate the down-regulation of lncRNA FAF on TGFβ1-P-Smad2/3 pathway. Furthermore, knockdown of the FGF9 expression also abolished the inhibitory effect of FAF on fibrosis. In summary, we demonstrated that the overexpression of lncRNA FAF could inhibit fibrosis induced by Ang II via the TGFβ1-P-Smad2/3 signalling by targeting FGF9 in CFs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号