首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5286篇
  免费   771篇
  国内免费   1551篇
  2024年   38篇
  2023年   194篇
  2022年   186篇
  2021年   246篇
  2020年   264篇
  2019年   316篇
  2018年   308篇
  2017年   273篇
  2016年   325篇
  2015年   259篇
  2014年   275篇
  2013年   406篇
  2012年   222篇
  2011年   273篇
  2010年   288篇
  2009年   287篇
  2008年   297篇
  2007年   316篇
  2006年   331篇
  2005年   289篇
  2004年   263篇
  2003年   238篇
  2002年   176篇
  2001年   154篇
  2000年   164篇
  1999年   134篇
  1998年   112篇
  1997年   81篇
  1996年   106篇
  1995年   76篇
  1994年   89篇
  1993年   70篇
  1992年   79篇
  1991年   47篇
  1990年   54篇
  1989年   73篇
  1988年   32篇
  1987年   37篇
  1986年   26篇
  1985年   35篇
  1984年   30篇
  1983年   14篇
  1982年   16篇
  1981年   21篇
  1980年   25篇
  1979年   12篇
  1978年   18篇
  1977年   16篇
  1976年   5篇
  1974年   4篇
排序方式: 共有7608条查询结果,搜索用时 15 毫秒
151.
Abstract

The vegetation of the study site near Rome (Castelporziano Estate), where different woodland types occur, was analysed on the basis of ecological indicator values (Zeigerwerte) for light, temperature, continentality of climate, soil moisture, soil pH and nitrogen. Indicator values were estimated with Hill's reprediction algorithm for the flora of Central-Southern Italy relying on a database of 4,207 original relevés representing a balanced survey of the vegetation of this and surrounding areas. It was possible to obtain indicator values for an important fraction of the Italian Mediterranean flora. Results are ecologically reasonable, and it was possible to find strong correlation between the recalculated values and a few environmental variables. These correlations were not significant in an analogous test with subjectively derived scores of Ellenberg indicator values.  相似文献   
152.
Mitochondrial DNA haplotypes (control region, partial cytochrome b and ATPase6 genes) indicate a sister relationship between Vrljika and Neretva softmouth (Adriatic) trout Salmo obtusirostris . This relationship was supported by a tree of individuals based on microsatellite results [allele sharing distances ( D AS)], which revealed three distinctive clusters, corresponding to Jadro softmouth, Neretva brown trout Salmo trutta and Neretva softmouth trout. Within the latter taxon, Vrljika trout are clearly separated from other trout. The genetic results contradict the synonymy of Jadro with Vrljika softmouth trout, as recently proposed in the Red Book of Freshwater Fish in Croatia. Vrljika softmouth trout appear to have originated from a vicariance that split a common ancestor into large (Neretva) and small (Vrljika) fragmented populations 135 000–270 000 years ago. Vrljika softmouth trout can be distinguished by an array of derived phenotypic and molecular character states. For conservation, this population should be recognized formally at the same taxonomic level as the other geographically separated populations of softmouth trout.  相似文献   
153.
A system of cuticular nomenclature based on the strata observed in Enoplia is proposed. Nematode cuticle is divided into four fundamental strata: epicuticle, exocuticle, mesocuticle, and endocuticle. Application of this system allows the correlation of complementary strata throughout Nemata. The major taxonomic categories within Nemata are differentiated on the basis of their cuticular strata as compared with the Enoplia model cuticle.  相似文献   
154.
Summary A constructed urban wetland in Adelaide was surveyed 18 months and 10 years after construction to see how shoreline vegetation, soil electrical conductivity (EC), texture and pH changed over time and to provide data for future site management. Multivariate analysis detected four plant associations at 18 months: salt‐tolerant taxa on conductive clays; a weed‐dominated community on lower EC soil; and two smaller waterlogged, low EC clusters dominated by Common Reed (Phragmites australis) and Sea Club‐Rush (Bolboschoenus caldwellii), respectively. At 10 years, site cover and heterogeneity was higher, with the margins dominated by Phragmites and salt‐tolerant species. EC was much lower and more uniform, and the soils were heavier and more alkaline. Managed storm water flushing apparently lowered soil EC, but possibly also disturbed the shoreline. However, weeds were still common, and the potential for domination by Phragmites at the expense of other native shoreline species means that ongoing monitoring and hydrological and vegetation management are essential to maintain site habitat diversity.  相似文献   
155.
156.
The familial placements of Cyrtandromoea Zoll. and Wightia Wall., two small and enigmatic South‐East Asian genera, have long been controversial in Lamiales. Here we adopt a two‐step approach to resolve their phylogenetic relationships. We initially reconstructed a large‐scale phylogeny of Lamiales using six chloroplast markers (atpB, matK, ndhF, psbBTNH, rbcL, and rps4). The results showed that both Cyrtandromoea and Wightia emerged in the LMPO clade, including Lamiaceae, Mazaceae, Phrymaceae, Paulowniaceae, and Orobanchaceae. Based on the second set of six chloroplast markers (atpB, matK, ndhF, rbcL, rps16, and trnL‐F) and two nuclear ribosomal regions (external transcribed spacer and internal transcribed spacer) for the analyses focusing on the LMPO clade, our results revealed that Cyrtandromoea was consistently nested within Phrymaceae, whereas Wightia was supported as sister to Phrymaceae by the chloroplast DNA dataset or sister to Paulowniaceae by the nuclear ribosomal DNA dataset. Morphological and anatomical evidence fully supports the inclusion of Cyrtandromoea in Phrymaceae, and an updated tribal classification is done for Phrymaceae with five tribes, that is, Cyrtandromoeeae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Diplaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Leucocarpeae, Mimuleae, and Phrymeae. The conflicting phylogenetic position of Wightia indicated by different genome markers results in difficulty placing the genus in either Phrymaceae or Paulowniaceae. Considering the distinct morphological differences between Wightia and other families in the LMPO clade, we here propose a new family, Wightiaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, fam. nov., to accommodate it, which is the 26th family recognized in Lamiales.  相似文献   
157.
Monitoring ecosystem functions in forests is a priority in a climate change scenario, as climate‐induced events may initially alter the functions more than slow‐changing attributes, such as biomass. The ecosystem functional properties (EFPs) are quantities that characterize key ecosystem processes. They can be derived by point observations of gas and energy exchanges between the ecosystems and the atmosphere that are collected globally at FLUXNET flux tower sites and upscaled at ecosystem level. The properties here considered describe the ability of ecosystems to optimize the use of resources for carbon uptake. They represent functional forest information, are dependent on environmental drivers, linked to leaf traits and forest structure, and influenced by climate change effects. The ability of vegetation optical depth (VOD) to provide forest functional information is investigated using 2011–2014 satellite data collected by the Soil Moisture and Ocean Salinity mission and using the EFPs as reference dataset. Tropical forests in Africa and South America were analyzed, also according to ecological homogeneous units. VOD jointly with water deficit information explained 93% and 87% of the yearly variability in both flux upscaled maximum gross primary productivity and light use efficiency functional properties, in Africa and South America forests respectively. Maps of the retrieved properties evidenced changes in forest functional responses linked to anomalous climate‐induced events during the study period. The findings indicate that VOD can support the flux upscaling process in the tropical range, affected by high uncertainty, and the detection of forest anomalous functional responses. Preliminary temporal analysis of VOD and EFP signals showed fine‐grained variability in periodicity, in signal dephasing, and in the strength of the relationships. In selected drier forest types, these satellite data could also support the monitoring of functional dynamics.  相似文献   
158.
Carbon cycle feedbacks from permafrost ecosystems are expected to accelerate global climate change. Shifts in vegetation productivity and composition in permafrost regions could influence soil organic carbon (SOC) turnover rates via rhizosphere (root zone) priming effects (RPEs), but these processes are not currently accounted for in model predictions. We use a radiocarbon (bomb‐14C) approach to test for RPEs in two Arctic tall shrubs, alder (Alnus viridis (Chaix) DC.) and birch (Betula glandulosa Michx.), and in ericaceous heath tundra vegetation. We compare surface CO2 efflux rates and 14C content between intact vegetation and plots in which below‐ground allocation of recent photosynthate was prevented by trenching and removal of above‐ground biomass. We show, for the first time, that recent photosynthate drives mineralization of older (>50 years old) SOC under birch shrubs and ericaceous heath tundra. By contrast, we find no evidence of RPEs in soils under alder. This is the first direct evidence from permafrost systems that vegetation influences SOC turnover through below‐ground C allocation. The vulnerability of SOC to decomposition in permafrost systems may therefore be directly linked to vegetation change, such that expansion of birch shrubs across the Arctic could increase decomposition of older SOC. Our results suggest that carbon cycle models that do not include RPEs risk underestimating the carbon cycle feedbacks associated with changing conditions in tundra regions.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号