首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6064篇
  免费   421篇
  国内免费   234篇
  2024年   20篇
  2023年   112篇
  2022年   162篇
  2021年   176篇
  2020年   160篇
  2019年   211篇
  2018年   260篇
  2017年   184篇
  2016年   194篇
  2015年   226篇
  2014年   258篇
  2013年   679篇
  2012年   174篇
  2011年   213篇
  2010年   202篇
  2009年   220篇
  2008年   219篇
  2007年   284篇
  2006年   283篇
  2005年   276篇
  2004年   196篇
  2003年   186篇
  2002年   173篇
  2001年   154篇
  2000年   116篇
  1999年   99篇
  1998年   102篇
  1997年   111篇
  1996年   98篇
  1995年   102篇
  1994年   72篇
  1993年   66篇
  1992年   88篇
  1991年   51篇
  1990年   54篇
  1989年   61篇
  1988年   59篇
  1987年   55篇
  1986年   48篇
  1985年   51篇
  1984年   70篇
  1983年   37篇
  1982年   46篇
  1981年   32篇
  1980年   24篇
  1979年   20篇
  1978年   9篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
排序方式: 共有6719条查询结果,搜索用时 15 毫秒
991.
992.
993.
miRNA是近年来发现的一类长约22 nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。大量研究表明脂肪组织中的miRNAs参与了脂肪细胞分化、脂代谢等多种生物过程调控,其自身也受到转录因子、脂肪细胞因子和环境因子等调控,这些复杂的相互作用关系构成了脂肪组织中miRNA的调控网络,循环miRNA的发现为这个网络加入了新元素。对肥胖等代谢疾病的研究,应该从这个复杂的动态网络中寻找答案。文中综述了脂肪组织中miRNA的最新研究进展,以期为利用miRNA进行肥胖等相关代谢失调疾病的治疗提供新思路。  相似文献   
994.
昆虫糖脂代谢研究进展   总被引:1,自引:0,他引:1  
魏琪  苏建亚 《昆虫学报》2016,(8):906-916
肥胖症和糖尿病的日趋流行已经成为世界范围内的公共健康问题,其病因主要在于体内血糖/血脂含量升高引起的能量代谢紊乱。大量的证据表明,昆虫可以作为研究人类代谢疾病的理想模型,它不仅能合成与哺乳动物同源的糖脂代谢相关激素(如胰岛素样肽和脂动激素),而且还具有进化保守的代谢信号通路(如雷帕霉素靶蛋白信号通路)及相关器官与组织(如中肠和脂肪体)。本文主要介绍了昆虫糖脂代谢的过程与调控机制,重点涉及脂肪体和绛色细胞的生理功能、胰岛素样肽/脂动激素对血糖的拮抗调节、参与营养物质代谢的胰岛素-胰岛素样生长因子信号通路以及与类固醇激素合成相关的胆固醇代谢等内容,并结合最新研究成果对黑腹果蝇Drosophila melanogaster糖脂代谢相关基因及其功能进行了总结,以期为昆虫生理学和人类代谢疾病研究提供参考。  相似文献   
995.
Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N6-etheno-2′-deoxyadenosine (?dA) and 3,N4-etheno-2′-deoxycytidine (?dC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ?dA, and ?dC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ?dA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p?p?p?相似文献   
996.
Oxidative stress is involved in the development of aging-related diseases, such as neurodegenerative diseases. Dietary antioxidants that can protect neuronal cells from oxidative damage play an important role in preventing such diseases. Previously, we reported that water-soluble fractions purified from defatted sesame seed flour exhibit good antioxidant activity in vitro. In the present study, we investigated the protective effects of white and gold sesame seed water-soluble fractions (WS-wsf and GS-wsf, respectively) against 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydrogen peroxide (H2O2) induced oxidative stress in human neuroblast SH-SY5Y cells. Pretreatment with WS-wsf and GS-wsf did not protect cells against AAPH-induced cytotoxicity, while simultaneous co-treatment with AAPH significantly improved cell viability and inhibited membrane lipid peroxidation. These results suggest that WS-wsf and GS-wsf protect cells from AAPH-induced extracellular oxidative damage via direct scavenging of peroxyl radicals. When oxidative stress was induced by H2O2, pretreatment WS-wsf and GS-wsf significantly enhanced cell viability. These results suggest that in addition to radical scavenging, WS-wsf and GS-wsf enhance cellular resistance to intracellular oxidative stress by activation of the Nrf-2/ARE pathway as confirmed by the increased Nrf2 protein level in the nucleus and increased heme oxygenase 1 (HO-1) mRNA expression. The roles of ferulic and vanillic acids as bioactive antioxidants in these fractions were also confirmed. In conclusion, our results indicated that WS-wsf and GS-wsf, which showed antioxidant activity in vitro, are also efficient antioxidants in a cell system protecting SH-SY5Y cells against both extracellular and intracellular oxidative stress.  相似文献   
997.
Action mechanisms of anesthetics remain unclear because of difficulty in explaining how structurally different anesthetics cause similar effects. In Saccharomyces cerevisiae, local anesthetics and antipsychotic phenothiazines induced responses similar to those caused by glucose starvation, and they eventually inhibited cell growth. These drugs inhibited glucose uptake, but additional glucose conferred resistance to their effects; hence, the primary action of the drugs is to cause glucose starvation. In hxt0 strains with all hexose transporter (HXT) genes deleted, a strain harboring a single copy of HXT1 (HXT1s) was more sensitive to tetracaine than a strain harboring multiple copies (HXT1m), which indicates that quantitative reduction of HXT1 increases tetracaine sensitivity. However, additional glucose rather than the overexpression of HXT1/2 conferred tetracaine resistance to wild-type yeast; therefore, Hxts that actively transport hexoses apparently confer tetracaine resistance. Additional glucose alleviated sensitivity to local anesthetics and phenothiazines in the HXT1m strain but not the HXT1s strain; thus, the glucose-induced effects required a certain amount of Hxt1. At low concentrations, fluorescent phenothiazines were distributed in various membranes. At higher concentrations, they destroyed the membranes and thereby delocalized Hxt1-GFP from the plasma membrane, similar to local anesthetics. These results suggest that the aforementioned drugs affect various membrane targets via nonspecific interactions with membranes. However, the drugs preferentially inhibit the function of abundant Hxts, resulting in glucose starvation. When Hxts are scarce, this preference is lost, thereby mitigating the alleviation by additional glucose. These results provide a mechanism that explains how different compounds induce similar effects based on lipid theory.  相似文献   
998.
999.
The ability of mesenchymal stromal cells (MSCs) to differentiate into adipocytes provides a cellular model of human origin to study adipogenesis in vitro. One of the major challenges in studying adipogenesis is the lack of tools to identify and monitor the differentiation of various subpopulations within the heterogeneous pool of MSCs. Cluster of differentiation (CD)36 plays an important role in the formation of intracellular lipid droplets, a key characteristic of adipocyte differentiation/maturation. The objective of this study was to develop a reproducible quantitative method to study adipocyte differentiation by comparing two lipophilic dyes [Nile Red (NR) and Bodipy 493/503] in combination with CD36 surface marker staining. We identified a subpopulation of adipose-derived stromal cells that express CD36 at intermediate/high levels and show that combining CD36 cell surface staining with neutral lipid-specific staining allows us to monitor differentiation of adipose-derived stromal cells that express CD36intermediate/high during adipocyte differentiation in vitro. The gradual increase of CD36intermediate/high/NRpositive cells during the 21 day adipogenesis induction period correlated with upregulation of adipogenesis-associated gene expression.  相似文献   
1000.
Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3−/−) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3−/− mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3−/− mice. Gpat3−/− enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3−/− mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号