首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12622篇
  免费   526篇
  国内免费   410篇
  2023年   165篇
  2022年   243篇
  2021年   255篇
  2020年   301篇
  2019年   366篇
  2018年   389篇
  2017年   316篇
  2016年   314篇
  2015年   331篇
  2014年   513篇
  2013年   843篇
  2012年   363篇
  2011年   553篇
  2010年   391篇
  2009年   517篇
  2008年   495篇
  2007年   582篇
  2006年   485篇
  2005年   417篇
  2004年   358篇
  2003年   369篇
  2002年   343篇
  2001年   300篇
  2000年   276篇
  1999年   282篇
  1998年   273篇
  1997年   264篇
  1996年   253篇
  1995年   284篇
  1994年   257篇
  1993年   234篇
  1992年   209篇
  1991年   161篇
  1990年   171篇
  1989年   147篇
  1988年   95篇
  1987年   101篇
  1986年   76篇
  1985年   156篇
  1984年   181篇
  1983年   107篇
  1982年   123篇
  1981年   113篇
  1980年   120篇
  1979年   79篇
  1978年   62篇
  1977年   63篇
  1976年   64篇
  1975年   58篇
  1974年   52篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
921.
The selection of culture media and supplements therein has a tremendous impact on the regulation of oocyte maturation in vitro. In the present study, we have evaluated how altering the levels of glutamine in the presence or absence of glucose affects meiotic arrest in cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) when cultured in either the simple medium M16 or the more complex Eagle's minimum essential medium (MEM). We have also tested the effectiveness of follicle-stimulating hormone (FSH) in triggering germinal vesicle breakdown (GVB) and purine de novo synthesis in differing MEM culture conditions. When DO were cultured 17-18 hr in hypoxanthine (HX)- or dbcAMP-supplemented M16 medium, neither glucose nor glutamine had any effect on oocyte maturation, with dbcAMP the more effective inhibitor. In the absence of glutamine, cumulus cells promoted meiotic resumption, since significantly lower levels of meiotic arrest were maintained in CEO than in DO by either HX or dbcAMP, but addition of the amino acid dose-dependently decreased the maturation percentage in CEO below that observed in DO. In MEM, glutamine and glucose again had little effect on the maturation of DO, although the percentage of maturing DO in HX-supplemented medium was about 20% lower than that in M16 medium. In the absence of glucose, high levels of maturation were observed in CEO in glutamine-free medium that were dose-dependently lowered by the amino acid. However, when glucose was present, CEO were as effectively arrested as DO when glutamine was absent, with no further effect of the amino acid. This inhibitory action of glucose was dependent on the essential amino acids present in MEM. The effects of glutamine were not due to changes in metabolic coupling between the oocyte and cumulus cells. Measurement of purine de novo synthesis indicated that the maintenance of meiotic arrest as well as FSH induction of meiotic resumption were associated with increases in purine synthesis. We conclude that glucose and glutamine act cooperatively to promote the synthesis of new purine compounds within the somatic compartment and that the timing and duration of such synthesis determines whether meiotic resumption will be suppressed or promoted.  相似文献   
922.
The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.  相似文献   
923.
Candida tropicalis enoyl thioester reductase Etr1p and the Saccharomyces cerevisiae homologue Mrf1p catalyse the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (FAS). Unlike prokaryotic enoyl thioester reductases (ETRs), which belong to the short-chain dehydrogenases/reductases (SDR), Etr1p and Mrf1p represent structurally distinguishable ETRs that belong to the medium-chain dehydrogenases/reductases (MDR) superfamily, indicating independent origin of two separate classes of ETRs. The crystal structures of Etr1p, the Etr1p-NADPH complex and the Etr1Y79Np mutant were refined to 1.70A, 2.25A and 2.60A resolution, respectively. The native fold of Etr1p was maintained in Etr1Y79Np, but the mutant had only 0.1% of Etr1p catalytic activity remaining and failed to rescue the respiratory deficient phenotype of the mrf1Delta strain. Mutagenesis of Tyr73 in Mrf1p, corresponding to Tyr79 in Etr1p, produced similar results. Our data indicate that the mitochondrial reductase activity is indispensable for respiratory function in yeast, emphasizing the significance of Mrf1p (Etr1p) and mitochondrial FAS for the integrity of the respiratory competent organelle.  相似文献   
924.
Apoptotic cell death has been proposed to play a role in the neuronal loss observed following traumatic injury in the CNS and PNS. The present study uses an in vitro tissue culture model to investigate whether free fatty acids (FFAs), at concentrations comparable to those found following traumatic brain injury, trigger cell death. Nerve growth factor (NGF)-differentiated PC12 cells exposed to oleic and arachidonic acids (2 : 1 ratio FFA/BSA) showed normal cell survival. However, when cells were exposed to stearic and palmitic acids, there was a dramatic loss of cell viability after 24 h of treatment. The cell death induced by stearic acid and palmitic acid was apoptotic as assessed by morphological analysis, and activation of caspase-8 and caspase-3-like activities. Western blotting showed that differentiated PC12 cells exposed to stearic and palmitic acids exhibited the signature apoptotic cleavage fragment of poly (ADP-ribose) polymerase (PARP). Interestingly, blockade of caspase activities with the pan-caspase inhibitor z-VAD-fmk failed to prevent the cell death observed induced by palmitic or stearic acid. RT-PCR and RNA blot experiments showed an up-regulation of the Fas receptor and ligand mRNA. These findings are consistent with our hypothesis that FFAs may play a role in the cell death associated with trauma in the CNS and PNS.  相似文献   
925.
The dopamine D2 receptor (D2R) is target for antipsychotic drugs and associated with several neuropsychiatric disorders. D2R has a long third cytoplasmic loop and a short carboxyl-terminal cytoplasmic tail. It exists as two alternatively spliced isoforms, termed D2LR and D2SR, which differ in the presence and absence, respectively, of a 29 amino acid insert in the third cytoplasmic loop. To evaluate the differential roles of the two D2R isoforms, we transfected both isoforms into NG108-15 cells and observed their subcellular localization by a confocal laser scanning light microscope. D2SR was predominantly localized at the plasma membrane, whereas D2LR was mostly retained in the perinuclear region around the Golgi apparatus. Using a yeast two hybrid system with a mouse brain cDNA library and coimmunoprecipitation assay, we found that heart-type fatty acid binding protein (H-FABP) interacts with D2LR but not with D2SR. H-FABP is a cytosolic protein involved in binding and transport of fatty acids. Overexpressed H-FABP and endogenous H-FABP were colocalized with the intracellular D2LR in NG108-15 cells. Furthermore, in the rat striatum, H-FABP was detected in the D2R-expressing neurons. From these results, H-FABP is associated with D2LR, and may thereby modulate the subcellular localization and function of D2LR.  相似文献   
926.
Strain B51 capable of degrading polychlorinated biphenyls (PCB) was isolated from soil contaminated with wastes from the chemical industry. Based on its morphological and chemotaxonomic characteristics, the strain was identified as a Microbacterium sp. Experiments with washed cells showed that strain B51 is able to degrade ortho- and para-substituted mono-, di-, and trichlorinated biphenyls (MCB, DCB, and TCB, respectively). Unlike the known PCB degraders, Microbacterium sp. B51 is able to oxidize the ortho-chlorinated ring of 2,2-DCB and 2,4-DCB and the para-chlorinated ring of 4.4-DCB. The degradation of 2,4-DCB and 4,4-DCB was associated with the accumulation of 4-chlorobenzoic acid (4-CBA) in the medium in amounts comprising 80–90% of the theoretical yield. The strain was able to utilize 2-MCB, 2,2-DCB, and their intermediate 2-CBA and to oxidize the mono(ortho)-chlorinated ring of 2,4,2-TCB and the di(ortho-para)-chlorinated ring of 2,4,4-TCB. A mixed culture of Microbacterium sp. B51 and the 4-CBA-degrading bacterium Arthrobacter sp. H5 was found to grow well on 1 g/l 2,4-DCB as the sole source of carbon and energy.  相似文献   
927.
Overmedication is nowadays a serious problem in health care due to influences from the pharmaceutical industry and agencies responsible for regulation. The situation has indeed become appalling in psychiatry, where both theories and treatments have deteriorated under the impact of the industry. The overmedication problem is associated with biased biology in medicine. Adequate biological approaches would indicate that drug therapies must yield to diet therapies, particularly treatments involving omega-3 fatty acids, in many cases. To the extent that philosophy of science adapts to mainstream medicine in analyses of the current situation, it may reinforce the existing bias. To redress imbalances in health care, we ultimately have to rely on common sense.  相似文献   
928.
The retinoid-X receptor (RXR) is a ligand activated nuclear receptor that is the heterodimer partner for many class II nuclear receptors. Previously identified natural ligands for this receptor include 9-cis retinoic acid (9cRA), docosahexaenoic acid, and phytanic acid. Our studies were performed to determine if there are any unidentified, physiologically important RXR ligands. Agonists for RXR were purified from rat heart and testes lipid extracts with the use of a cell-based reporter assay to monitor RXR activation. Purified active fractions contained a variety of unsaturated fatty acids and components were quantified by gas-liquid chromatography of derivatized samples. The corresponding fatty acid standards elicited a similar response in the reporter cell assay. Competition binding analysis revealed that the active fatty acids compete with [3H]9cRA for binding to RXR. Non-esterified fatty acids were analyzed from lipid extracts of isolated heart and testes nuclei and endogenous concentrations were found to be within the range of their determined binding affinities. Our studies reveal tissue dependent profiles of RXR agonists and support the idea of unsaturated fatty acids as physiological ligands of RXR.  相似文献   
929.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   
930.
The effects of sterculic acid on cell size, adiposity, and fatty acid composition of differentiating 3T3-L1 adipocytes are correlated with stearoyl-CoA desaturase (SCD) expression (mRNA and protein levels) and enzyme activity. Fluorescence-activated cell scanning (FACS) analysis showed that adipocytes differentiated with methylisobutylxanthine, dexamethasone, and insulin (MDI) plus 100 microM sterculic acid comprised a population of predominantly large cells with reduced adiposity compared to MDI-treated cells. Although both groups had similar amounts of total fat, their fatty acid profiles were strikingly different: MDI-treated cells had high levels of the unsaturated palmitoleic (Delta(9)-16:1) and oleic (Delta(9)-18:1) acids, whereas the cells cultured with MDI plus sterculic acid accumulated palmitic (16:0) and stearic (18:0) acids together with a marked reduction in Delta(9)-16:1. Although the cells treated with MDI plus sterculic acid had similar levels of scd1 and scd2 mRNAs and antibody-detectable SCD protein as the MDI-treated cells, the SCD enzyme activity was inhibited more than 90%. The accumulation of 16:0 and 18:0, together with normal levels of fatty acid synthase (FAS) and aP2 mRNAs, shows that de novo synthesis and elongation of fatty acids, as well as cell differentiation, were not affected by sterculic acid. Because of the increase in cell size in the sterculic acid-treated cells, the insulin-stimulated 2-deoxyglucose (2-DOG) uptake was determined. Compared to MDI-treated cells, the 2-DOG uptake in the cells treated with sterculic acid was not affected. These results indicate that sterculic acid directly inhibits SCD activity, possibly by a turnover-dependent reaction, without affecting the processes required for adipocyte differentiation, scd gene expression or SCD protein translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号