首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   65篇
  国内免费   17篇
  2023年   16篇
  2022年   23篇
  2021年   16篇
  2020年   24篇
  2019年   30篇
  2018年   36篇
  2017年   22篇
  2016年   14篇
  2015年   22篇
  2014年   34篇
  2013年   51篇
  2012年   21篇
  2011年   25篇
  2010年   25篇
  2009年   37篇
  2008年   55篇
  2007年   42篇
  2006年   35篇
  2005年   40篇
  2004年   43篇
  2003年   26篇
  2002年   33篇
  2001年   19篇
  2000年   18篇
  1999年   22篇
  1998年   19篇
  1997年   24篇
  1996年   17篇
  1995年   35篇
  1994年   23篇
  1993年   12篇
  1992年   16篇
  1991年   16篇
  1990年   14篇
  1989年   22篇
  1988年   13篇
  1987年   7篇
  1986年   6篇
  1985年   10篇
  1984年   24篇
  1983年   11篇
  1982年   21篇
  1981年   12篇
  1980年   13篇
  1979年   8篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1974年   4篇
  1973年   4篇
排序方式: 共有1089条查询结果,搜索用时 15 毫秒
71.
Oxidative stress, induced by various neurodegenerative diseases, initiates a cascade of events leading to apoptosis, and thus plays a critical role in neuronal injury. In this study, we have investigated the potential neuroprotective effect of the octadecaneuropeptide (ODN) on 6‐hydroxydopamine (6‐OHDA)‐induced oxidative stress and apoptosis in cerebellar granule neurons (CGN). ODN, which is produced by astrocytes, is an endogenous ligand for both central‐type benzodiazepine receptors (CBR) and a metabotropic receptor. Incubation of neurons with subnanomolar concentrations of ODN (10?18 to 10?12 M) inhibited 6‐OHDA‐evoked cell death in a concentration‐dependent manner. The effect of ODN on neuronal survival was abrogated by the metabotropic receptor antagonist, cyclo1–8[DLeu5]OP, but not by a CBR antagonist. ODN stimulated polyphosphoinositide turnover and ERK phosphorylation in CGN. The protective effect of ODN against 6‐OHDA toxicity involved the phospholipase C/ERK MAPK transduction cascade. 6‐OHDA treatment induced an accumulation of reactive oxygen species, an increase of the expression of the pro‐apoptotic gene Bax, a drop of the mitochondrial membrane potential and a stimulation of caspase‐3 activity. Exposure of 6‐OHDA‐treated cells to ODN blocked all the deleterious effects of the toxin. Taken together, these data demonstrate for the first time that ODN is a neuroprotective agent that prevents 6‐OHDA‐induced oxidative stress and apoptotic cell death.  相似文献   
72.
Formaldehyde is endogenously produced in the human body and brain levels of this compound are elevated in neurodegenerative conditions. Although the toxic potential of an excess of formaldehyde has been studied, little is known on the molecular mechanisms underlying its neurotoxicity as well as on the ability of neurons to metabolize formaldehyde. To address these topics, we have used cerebellar granule neuron cultures as model system. These cultures express mRNAs of various enzymes that are involved in formaldehyde metabolism and were remarkably resistant toward acute formaldehyde toxicity. Cerebellar granule neurons metabolized formaldehyde with a rate of around 200 nmol/(h × mg) which was accompanied by significant increases in the cellular and extracellular concentrations of formate. In addition, formaldehyde application significantly increased glucose consumption, almost doubled the rate of lactate release from viable neurons and strongly accelerated the export of the antioxidant glutathione. The latter process was completely prevented by inhibition of the known glutathione exporter multidrug resistance protein 1. These data indicate that cerebellar granule neurons are capable of metabolizing formaldehyde and that the neuronal glycolysis and glutathione export are severely affected by the presence of formaldehyde.  相似文献   
73.
We report here that large conductance K+ selective channel in adrenal chromaffin granules is controlled by pH. We measured electrogenic influx of 86Rb+ into chromaffin granules prepared from bovine adrenal gland medulla. The 86Rb+ influx was inhibited by acidic pH. Purified chromaffin granule membranes were also fused with planar lipid bilayer. A potassium channel with conductance of 432±9 pS in symmetric 450 mM KCl was observed after reconstitution into lipid bilayer. The channel activity was unaffected by charybdotoxin, a blocker of the Ca2+-activated K+ channel of large conductance. It was observed that acidification to pH 6.4 cis side of the membrane lowered the channel open probability and single channel conductance. Whereas only weak influence on the single channel current amplitude and open probability were observed upon lowering of the pH at the trans side. We conclude that a pH-sensitive large conductance potassium channel operates in the chromaffin granule membrane.  相似文献   
74.
AMPA receptors (AMPAR) mediate the majority of fast excitatory neurotransmission in the central nervous system (CNS). Transmembrane AMPAR regulatory proteins (TARPs) have been identified as a novel family of proteins which act as auxiliary subunits of AMPARs to modulate AMPAR trafficking and function. The trafficking of AMPARs to regulate the number of receptors at the synapse plays a key role in various forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Expression of the prototypical TARP, stargazin/TARPγ2, is ablated in the stargazer mutant mouse, an animal model of absence epilepsy and cerebellar ataxia. Studies on the stargazer mutant mouse have revealed that failure to express TARPγ2 has widespread effects on the balance of expression of both excitatory (AMPAR) and inhibitory receptors (GABAA receptors, GABAR). The understanding of TARP function has implications for the future development of AMPAR potentiators, which have been shown to have therapeutic potential in both psychological and neurological disorders such as schizophrenia, depression and Parkinson's disease.  相似文献   
75.
In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium‐sensing receptor (CaSR), a homodimeric G‐protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell‐surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion‐sensing G‐protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 375–389, 2016  相似文献   
76.
Bawei Longzuan granule (BLG) is a representative Zhuang medicine preparation. The present work aims to characterize the chemical constituents of BLG and evaluate its anti‐arthritic activity. The major chemical constituents of BLG were tentatively identified by ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF/MS), which revealed the presence of some alkaloids (e. g., magnoflorine, sinomenine and nitidine) and flavonoids (e. g., hesperidin, diosmin and sinensetin) that may be partly responsible for the anti‐arthritic effect of BLG. In addition, the collagen‐induced arthritis (CIA) model in rats was induced by intradermal injection of bovine collagen‐II in complete Freund's adjuvant at the base of tail. The CIA rats received oral administration of BLG (1.25, 2.5 and 5 g/kg) for 30 days. Then, various indicators were determined to evaluate its anti‐arthritic activity, including paw swelling, arthritic score, body weight, knee joint pathology, thymus index and spleen index. Additionally, the serum levels of tumor necrosis factor (TNF)‐α, interferon (IFN)‐γ, interleukin (IL)‐1β, IL‐6, IL‐4 and IL‐10 were measured to determine the underlying mechanisms. The results showed that BLG efficiently ameliorated the severity of arthritis in CIA rats by decreasing paw swelling and arthritis score and improving the histological lesions of knee joint. Moreover, the serum levels of several pro‐inflammatory cytokines (i. e., IL‐1β, TNF‐α, IL‐6 and IFN‐γ) were downregulated, whereas two anti‐inflammatory factors (i. e., IL‐4 and IL‐10) were upregulated after BLG administration. These results indicated that BLG possessed promising therapeutic effect on collagen‐induced arthritis by inhibiting inflammatory responses. BLG can be used as a complementary or alternative traditional medicine to treat rheumatoid arthritis.  相似文献   
77.
Membrane‐less organelles, because of their capacity to dynamically, selectively and reversibly concentrate molecules, are very well adapted for local information processing and rapid response to environmental fluctuations. These features are particularly important in the context of neuronal cells, where synapse‐specific activation, or localized extracellular cues, induce signaling events restricted to specialized axonal or dendritic subcompartments. Neuronal ribonucleoprotein (RNP) particles, or granules, are nonmembrane bound macromolecular condensates that concentrate specific sets of mRNAs and regulatory proteins, promoting their long‐distance transport to axons or dendrites. Neuronal RNP granules also have a dual function in regulating the translation of associated mRNAs: while preventing mRNA translation at rest, they fuel local protein synthesis upon activation. As revealed by recent work, rapid and reversible switches between these two functional modes are triggered by modifications of the networks of interactions underlying RNP granule assembly. Such flexible properties also come with a cost, as neuronal RNP granules are prone to transition into pathological aggregates in response to mutations, aging, or cellular stresses, further emphasizing the need to better understand the mechanistic principles governing their dynamic assembly and regulation in living systems.  相似文献   
78.
Over the past decades, the malaria burden in Thailand has substantially declined. Most infections now originate from the national border regions. In these areas, the prevalence of asymptomatic infections is still substantial and poses a challenge for the national malaria elimination program. To determine epidemiological parameters as well as risk factors for malaria infection in western Thailand, we carried out a cohort study in Kanchanaburi and Ratchaburi provinces on the Thailand-Myanmar border. Blood samples from 999 local participants were examined for malaria infection every 4 weeks between May 2013 and Jun 2014. Prevalence of Plasmodium falciparum and Plasmodium vivax was determined by quantitative PCR (qPCR) and showed a seasonal variation with values fluctuating from 1.7% to 4.2% for P. vivax and 0% to 1.3% for P. falciparum. Ninety percent of infections were asymptomatic. The annual molecular force of blood-stage infection (molFOB) was estimated by microsatellite genotyping to be 0.24 new infections per person-year for P. vivax and 0.02 new infections per person-year for P. falciparum. The distribution of infections was heterogenous, that is, the vast majority of infections (>80%) were found in a small number of individuals (<8% of the study population) who tested positive at multiple timepoints. Significant risk factors were detected for P. vivax infections, including previous clinical malaria, occupation in agriculture and travel to Myanmar. In contrast, indoor residual spraying was associated with a protection from infection. These findings provide a recent landscape of malaria epidemiology and emphasize the importance of novel strategies to target asymptomatic and imported infections.  相似文献   
79.
80.
The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号