首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   14篇
  国内免费   15篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   3篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   10篇
  2014年   6篇
  2013年   42篇
  2012年   8篇
  2011年   17篇
  2010年   9篇
  2009年   11篇
  2008年   12篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   11篇
  2003年   12篇
  2002年   7篇
  2001年   7篇
  2000年   7篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   6篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有287条查询结果,搜索用时 46 毫秒
261.
为探讨水杨酸(SA)对不同增殖方式来源的浒苔生长和生理特性的影响,本文选取营养繁殖得到的浒苔(VU)和孢子/配子繁殖得到的浒苔(SU)作为供试材料,设置不同的水杨酸浓度,测定两种浒苔的生长、叶绿素荧光、超氧化物歧化酶(SOD)和可溶性蛋白含量等生理指标.结果表明: 低浓度水杨酸可以促进VU和SU的生长,对VU促进效果更为显著;在0.2 μg·mL-1水杨酸浓度下,VU相对生长速率达到最大值21.0%,且与SU相比,VU最大光化学效率提高了9.8%.水杨酸对两种浒苔的SOD活性影响较大,在水杨酸浓度为0.2、0.5 μg·mL-1下,VU的SOD活性增幅分别达52.0%、198.6%,SU的SOD活性增幅分别达54.1%、38.0%.水杨酸促进了浒苔的相对电子传递速率、光合作用和蛋白质含量.水杨酸对两种增殖方式来源的浒苔的生长均有促进作用,尤其是对VU的促进作用更为明显.  相似文献   
262.
A giant mitochondrion that branches and connects as a single mitochondrion in a cell has been observed during specific phases of the cell cycle of unicellular green algae, but has not been observed in multicellular algae. The genus Ulva is a green macroalga in which the haploid and diploid phases are isomorphic and its gametes develop parthenogenetically. The existence or absence of the giant mitochondrion, and its behavior in Ulva partita, were investigated using a parthenogenesis system. To observe the parthenogenesis of gametes and the dynamics of mitochondria by fluorescence microscopy, we developed an experimental system for culturing and observing U. partita on cover slips: gametes were suspended in 6‐well plates filled with artificial seawater, and cover slips were placed on the well bottoms. The gametes settled on the cover slips as spherical cells (1‐cell S phase). These cells grew into larger cells, losing their eyespot (1‐cell L phase), and developed into multicellular thalli. Gene introduction using the polyethylene glycol (PEG) method is available with transformation efficiencies of 9.0–15.1%. Transformation was performed using a plasmid encoding green fluorescent protein (GFP) fused to the mitochondrial targeting sequence, and mitochondria were labeled by GFP fluorescence. This revealed a string‐shaped giant mitochondrion in a cell of the 1‐cell S phase. In the 1‐cell L phase, a reticular mitochondrion was observed. After the initiation of cell division, the reticular mitochondrion was fragmented, and small oval mitochondria were observed in the 5‐cell phase.  相似文献   
263.
Cosmopolitan species of the genus Ulva (Ulvaceae; Chlorophyta) that populate the littoral zone of marine habitats constitute a staple diet for a variety of organisms, particularly snails, shellfish, polychaetes, and birds. Occurrence of Ulva species (e.g., U. flexuosa and U . prolifera) has also been observed in freshwater inland ecosystems that have no contact with saline water. However, the influence of the development of macroalgal mats of Ulva on indigenous organisms in limnic ecosystems has not been established. This study investigates the trophic relationships between Ulva flexuosa and one species of snail from freshwater habitats in central Europe. During the summer, the great pond snail (Lymnaea stagnalis) consumed Ulva as a source of nutrition even when other algae and plants were available. Lymnaea stagnalis consumed an average of 100 mg of Ulva thalli per day. This level of biomass exceeded the consumption of an alternative food source, the shoots of Elodea canadensis. Ulva thalli are more actively consumed by great pond snails than Elodea shoots, and this is expressed in terms of the differences of biomass consumption. It was also observed that the interior of the monostromatic tubular thalli of Ulva flexuosa serves as a protective shelter for juvenile great pond snails.  相似文献   
264.
In this study we used liver mitochondrial and microsomal fraction from rats pretreated with seaweed Ulva lactuca polysaccharide extract (ULP - 200 mg/kg body weight, daily for 21 days, oral gavage) on D-Galactosamine (500 mg/kg body weight, intraperitoneally) challenge. Effectiveness of ULP was determined based on functional status of trichloro acetic acid (TCA), urea cycle, and microsomal enzymes. The composition of sulfate polysaccharide content such as total sugars, sulfate and uronic acid were examined. In addition the fine ultra structural changes were examined using electron microscopy (EM). We observed significant (p < 0.001) mitochondrial and microsomal abnormalities during liver damage by D-Galactosamine, consequently altering enzymes of energy metabolism. Electron microscopy of D-Galactosamine intoxicated rat liver tissue revealed the swelling and loss of mitochondrial cristae. Conversely the rats pretreated with ULP against D-Galactosamine challenge prevented (p < 0.05) the significant abnormality of TCA, microsomal enzymes and severity of mitochondria as observed in EM study in rats injected with D-Galactosamine alone. However no effective prevention was observed in urea cycle enzymes among D-Galactosamine and treatment group rats. These results showed the effectiveness of ULP in stabilizing the functional status of mitochondrial and microsomal membrane which might be due to the presence of sulfated polysaccharide that could prevented the oxidative stress induced by D-Galactosamine intoxication.  相似文献   
265.
266.
Concentrations of heavy metals Fe, Mn, Cu, Zn, Pb, Cd, and Ni were determined in the thalluses of the green alga Ulva fenestrata sampled from different locations in Peter the Great Bay (Sea of Japan). According to the metal concentrations in Ulva, the degree of pollution of the surveyed areas in Peter the Great Bay decreases in the following series: Amur Bay > Ussuri Bay > Nakhodka Bay > Vostok Bay > the water area of Far Eastern State Marine Nature Biosphere Reserve. The microelement composition of Ulva from open-shore stations reflects the heavy metal pollution level of water areas as a whole. The concentrations of trace elements in U. fenestrata from closed coastal areas are indicative of marine coastal water pollution from local sources. Generally, metal concentrations in U. fenestrata from Peter the Great Bay are similar to heavy metal levels in non-polluted or weakly polluted coastal areas of the world.  相似文献   
267.
In the present paper, the possibility of the application of marine macroalga Ulva (Enteromorpha) prolifera, as microelemental feed supplement for livestock, was evaluated. The concept was based on two facts: the natural macroalga contains high concentrations of microelements and there is a possibility to greatly increase this content via biosorption. In order to characterize the biosorption process of metal ions by U. prolifera, preliminary experiments were conducted with Cr(III) ions. The effect of temperature, pH and the biomass concentration on the equilibrium of biosorption was investigated. For further experiments (biosorption of Mn(II), Zn(II), Cu(II), Co(II)), the following experimental conditions were chosen: pH 5, 25°C, the biomass concentration 1.0 g l−1. Equilibrium of the biosorption process could be described by the Langmuir equation. The theoretical maximum biosorption capacity was also determined by potentiometric titration of the biomass. The investigation of the external structure of the macroalga and atomic concentration of elements on the surface of the biomass was analyzed using scanning electron microscopy. The content of microelements in the biomass after biosorption increased 110,555; 44,228; 21,177; 2,281 and 1,458 times for Co(II), Cr(III),Cu(II), Zn(II), Mn(II), respectively. Therefore, biomass of U. prolifera enriched with individual microelements, mixed in the proper proportion could be used as feed supplement in animal feeding to cover the nutrient requirements for microelements.  相似文献   
268.
孔石莼(Ulva pertusa)凝集素的分离纯化及性质的研究   总被引:9,自引:0,他引:9  
为抑制肿瘤细胞增殖和防治有关病害提供基础理论依据 ,将孔石莼 (Ulva pertusa)经磷酸盐缓冲液抽提 ,2 0 %~ 75%硫酸铵分级沉淀 ,牛甲状腺球蛋白 - Sepharose4B亲和层析 ,可以从绿藻孔石莼中纯化出孔石莼凝集素 (UPL) ,在 PAGE上显示单一蛋白染色带 ,在等电聚焦电泳上显示单一蛋白染色带 ,其 p I为 8.40 .纯化后的 UPL的最大紫外吸收峰在 2 85nm,用 Sephadex G- 2 0 0分子筛层析测得其分子量为 1 1 0 4 7.该凝集素可以凝集人的 A、B、AB、O型红细胞 ,且凝集活性相同 ,在对人 (A、B、AB、O)兔、鲤、鲫的红细胞的凝集作用中 ,兔的凝集作用最强 .该凝集素凝集兔红细胞的作用不被 D-半乳糖、D-果糖、葡萄糖、蔗糖、甘露聚糖、γ球蛋白、卵清蛋白所抑制 ,仅被牛甲状腺球蛋白抑制 ,最小抑制浓度为 6.2 0 g/L.该凝集素在 p H4.0~ 1 0 .1 4范围内均有活性 ,但在p H6.50~ 9.51范围内活性较高 ,该凝集活性在 85℃加热 1 h,活力仍未改变 ,说明具有很强的耐热性 .  相似文献   
269.
Ulva lactuca L., at Veraval (20° 54N and 70° 22E) on the western coast of India, grows in the intertidal belt from June to late February. During the summer months of March, April and May, the species dries up, leaving rhizoidal fragments for perennation. High values of density, phytomass, frequency, weight, and volume have been recorded during September and January. Accumulation of phytomass appears to be chiefly density dependent. High dissolved oxygen content and low temperatures of the surface sea water favoured enhanced growth and, consequently, more phytomass.  相似文献   
270.
The seasonal cycle of biomass and tissue composition of Ulva rigida C. Agardh, in relation to nitrogen availability in the water column, was studied in 1991-1992 in the Sacca di Goro, a highly eutrophic lagoon in the Po River Delta (Italy). Nitrate uptake rates and storage capacity were also determined in laboratory experiments. The seasonal growth of U. rigida was related to the seasonal trend of nitrogen concentration in the water column. U. rigida biomass increased exponentially during spring and attained peaks of about 300-400 g dry mass (DM) m−2 in June. As biomass increased, U. rigida depleted nitrate in the water column. Thallus nitrate reserves also declined from 100 μmol N (g DM)−1 to almost undetectable levels, and total thallus nitrogen declined from 4% to 2.5% DM and 1.25% DM in 1991 and 1992, respectively. During summer, U. rigida decomposition increased, and organic nitrogen concentrations in the water column increased. The uptake experiments demonstrated an inverse relationship between thallus nitrate content and nitrate uptake rates. A modified Michaelis-Menten equation that accounts for thallus nitrate fit the uptake data well. U. rigida can accumulate up to about 400-500 μmol nitrate (g DM)−1 in cellular reserves. U. rigida in the Sacca di Goro has higher Km and lower Vmax/Km ratios for nitrate uptake than other chlorophycean species, indicating a low efficiency of uptake at low nitrate concentrations. This low uptake efficiency, and the ability to exploit N availability by storing cellular nitrate pools in excess of immediate growth needs, may represent a physiological response to an eutrophic environment where nitrate is in large supply for most of the year.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号