首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6833篇
  免费   403篇
  国内免费   178篇
  2024年   7篇
  2023年   86篇
  2022年   117篇
  2021年   171篇
  2020年   154篇
  2019年   217篇
  2018年   191篇
  2017年   161篇
  2016年   141篇
  2015年   193篇
  2014年   254篇
  2013年   413篇
  2012年   214篇
  2011年   245篇
  2010年   169篇
  2009年   221篇
  2008年   240篇
  2007年   297篇
  2006年   298篇
  2005年   299篇
  2004年   287篇
  2003年   269篇
  2002年   268篇
  2001年   226篇
  2000年   199篇
  1999年   155篇
  1998年   173篇
  1997年   180篇
  1996年   166篇
  1995年   138篇
  1994年   141篇
  1993年   137篇
  1992年   121篇
  1991年   106篇
  1990年   108篇
  1989年   117篇
  1988年   90篇
  1987年   66篇
  1986年   56篇
  1985年   76篇
  1984年   51篇
  1983年   26篇
  1982年   42篇
  1981年   28篇
  1980年   27篇
  1979年   26篇
  1978年   14篇
  1977年   11篇
  1976年   9篇
  1973年   7篇
排序方式: 共有7414条查询结果,搜索用时 312 毫秒
121.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   
122.
The 33 kDa protein of Photosystem II has one intrachain disulfide bond. Fluorescence spectroscopy shows that the major groups in the protein that bind to Ca2+ should be the carboxylic side groups of glutamic acid and/or aspartic acid. Fluorescence and Fourier-transform infrared (FTIR) spectroscopic studies indicate that the conformation of the 33 kDa protein is altered upon reduction, while the reduced protein still retains the secondary structure. FTIR spectroscopy also shows that the metal ions induce a relative decrease of unordered structure and -sheet, and a substantial increase of -helix in both the intact and the reduced 33 kDa protein. This indicates that the addition of cations results in a much more compact structure and that both the intact and the reduced 33 kDa proteins have the ability to bind calcium. The above results may suggest that the disulfide bridge is not essential for calcium binding.Abbreviations CD circular dichroism - FTIR Fourier transform infrared - La lanthanum - PS photosystem - Tb terbium  相似文献   
123.
Large earthen-walled lysimeters at the San Dimas Experimental Forest in southern California present a unique opportunity to assess vegetation effects on biogeochemical processes and cation release by weathering in controlled soil-vegetation systems where archived samples of soil parent material are available for comparison. The lysimeters were filled in 1937 with homogenized fine sandy loam derived on site from the weathering of diorite, and planted in 1946 with scrub oak (Quercus dumosa) and Coulter pine (Pinus coulteri). Changes in base cation contents were measured in above-ground biomass, and total and exchangeable soil pools to a depth of 1 meter. All cations in the non-exchangeable soil pool decreased relative to the initial fill material, indicating release by weathering. Sodium and K were depleted from both exchangeable and non-exchangeable pools of the soils. Plant uptake of Na was minimal, whereas K storage in vegetation exceeded the loss from the exchangeable soil pool. In both soil-vegetation systems, but especially for oak, there was an increase in exchangeable Ca and Mg. For all base cations, storage in above-ground biomass was greater for oak, whereas losses by weathering from the non-exchangeable soil pool were greater under pine. Strong evidence supports biocycling as a controlling mechanism resulting in greater Ca and Mg release by weathering under pine. In addition, decreases in non-exchangeable Ca and Mg were strongly correlated to decrease in Si under oak, whereas no correlation was observed under pine. We conclude that weathering reactions or stoichiometry differed between vegetation types.Corresponding author  相似文献   
124.
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO 3 and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO 4 and NO 3 concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO 4 -reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO 4 reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+ as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+ H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO 3 , Ca2+, SO 4 NO 3 , and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO4 2– concentrations. After CaCO3 treatment, reduction of SO 4 was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate.  相似文献   
125.
The effect of increased concentrations of calcium (Ca) (3–24 mM) and boron (B) (100–800 M) in the medium was studied on the occurrence of shoot tip necrosis (STN) in cultures of Pistacia vera L. STN was significantly reduced by application of Ca or B, however media with more than 200 M boron had reduced shoot multiplication. Ca (12–24 mM) supplied as calcium chloride reduced STN without any adverse effect on shoot multiplication or elongation, whereas calcium acetate reduced elongation. It is concluded that STN is a physiological mineral disorder associated with Ca and/or B deficiency in the meristematic regions of actively growing shoots. Application of Ca (up to 24 mM) as calcium chloride to the medium was the best treatment for the control of STN. Reduction of humidity or increased aeration in the culture jars did not have any significant effect on the occurrence of STN.Abbreviations MS Murashige and Skoog medium - STN Shoot tip necrosis  相似文献   
126.
To assess genotypic variability in nutrient supply of shoot branches, the distribution of 32P and 45Ca exported from a source nodal root (24-h uptake period) was measured within a genotype of a large-leaved (Kopu) and a small-leaved (Tahora) cultivar of Trifolium repens. Source-sink relationships of plants were modified by root severance, defoliation, and shade treatments. In control plants of both genotypes distribution of 32P and 45Ca closely followed the pathways that could be predicted from the known phyllotactic constraints on the vascular system. As such there was little allocation of radioisotopes (3.1% and 2.5% of exported 32P and 45Ca, respectively) from the source root to branches on the apposite side of the parent axis (far-side branches). However, genotypic differences in nutrient allocation were apparent, when treatments were imposed to alter intra-plant source-sink relationships. In the large-leaved genotype, the imposed treatments had minor effects on the allocation to far-side branches: whereas, in the small-leaved genotype, root severance and defoliation treatments increased lateral transport to far-side branches to 30% (32P) and 10% (45Ca) of exported radioisotopes. Genotypes with low (8–9) and high (12–13) numbers of vascular bundles were selected from within the large-leaved cultivar. Distribution of 32P was then measured after plants had been pre-treated by removal of all far-side roots two days prior to labelling. Genotypes with low vascular bundle number allocated 20% and those with high vascular bundle number 3.2% of exported 32P to far-side branches. It was concluded (1) that genotypic variation exists within T. repens for potential to alter intra-plant allocation of mineral nutrients, in response to treatments that modify source-sink relationships within plants; and (2) that this variation is correlated with differences among genotypes in the organisation of the vasculature of their stolons.  相似文献   
127.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
128.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   
129.
Although a neurotoxic role has been postulated for the β-amyloid protein (βAP), which accumulates in brain tissues in Alzheimer's disease, a precise mechanism underlying this toxicity has not been identified. The peptide fragment consisting of amino acid residues 25 through 35 (βAP25-35), in particular, has been reported to be toxic in cultured neurons. We report that βAP25-35, applied to rat hippocampal neurons in culture, caused reversible and repeatable increases in the intracellular Ca2+ concentration ([Ca2+]i), as measured by fura 2 fluorimetry. Furthermore, βAP25-35 induced bursts of excitatory potentials and action potential firing in individual neurons studied with whole cell current clamp recordings. The βAP25-35–induced [Ca2+]i elevations and electrical activity were enhanced by removal of extracellular Mg2+, and they could be blocked by tetrodotoxin, by non-N-methyl-D -aspartate (NMDA) and NMDA glutamate receptor antagonists, and by the L-type Ca2+ channel antagonist nimodipine. Similar responses of bursts of action potentials and [Ca2+]i increases were evoked by βAP1-40. Responses to βAP25-35 were not prevented by pretreatment with pertussis toxin. Excitatory responses and [Ca2+]i elevations were not observed in cerebellar neuron cultures in which inhibitory synapses predominate. Although the effects of βAP25-35 depended on the activation of glutamatergic synapses, there was no enhancement of kainate- or NMDA-induced currents by βAP25-35 in voltage-clamp studies. We conclude that βAP25-35 enhances excitatory activity in glutamatergic synaptic networks, causing excitatory potentials and Ca2+ influx. This property may explain the toxicity of βAP25–35. © 1995 John Wiley & Sons, Inc.  相似文献   
130.
Calcium ions play critical roles in neuronal differentiation. We have recorded transient, repeated elevations of calcium in embryonic Xenopus spinal neurons over periods of 1 h in vitro and in vivo, confocally imaging fluo 3-loaded cells at 5 s intervals. Calcium spikes and calcium waves are found both in neurons in culture and in the intact spinal cord. Spikes rise rapidly to approximately 400% of baseline fluorescence and have a double exponential decay, whereas waves rise slowly to approximately 200% of baseline fluorescence and decay slowly as well. Imaging of fura 2-loaded neurons indicates that intracellular calcium increases from 50 to 500 nM during spikes. Both spikes and waves are abolished by removal of extracellular calcium. Developmentally, the incidence and frequency of spikes decrease, whereas the incidence and frequency of waves are constant. Spikes are generated by spontaneous calcium-dependent action potentials and also utilize intracellular calcium stores. Waves are produced by a mechanism that does not involve classic voltage-dependent calcium channels. Spikes are required for expression of the transmitter GABA and for potassium channel modulation. Waves in growth cones are likely to regulate neurite extension. The results demonstrate the roles of a novel signaling system in regulating neuronal plasticity, that operates on a time scale 104 times slower than that of action potentials. © 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号