首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   710篇
  免费   7篇
  国内免费   11篇
  728篇
  2023年   8篇
  2022年   11篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   10篇
  2017年   3篇
  2016年   4篇
  2015年   37篇
  2014年   109篇
  2013年   81篇
  2012年   104篇
  2011年   91篇
  2010年   69篇
  2009年   17篇
  2008年   17篇
  2007年   25篇
  2006年   29篇
  2005年   9篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2001年   6篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   9篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有728条查询结果,搜索用时 15 毫秒
1.
The UK environmental e-science initiative supports the development and modification of simulation tools used to study radiation damage effects. We discuss the development and modification to the DL_POLY molecular dynamics (MD) code. Using the newly developed tools, we study the effects of radiation damage related to the safe encapsulation of highly radioactive materials, including nuclear waste. We address the possible differences between the radiation damage in the bulk and at the surface of a material, and perform MD simulations of energetic events in zircon structure. We find that in the case of readily amorphizable material, the formation of a stable alternative covalent network reduces the possible effect of the surface on the damaged structure.  相似文献   
2.
Sarcoplasmic reticulum Ca2+-ATPase couples the motions and rearrangements of three cytoplasmic domains (A, P, and N) with Ca2+ transport. We explored the role of electrostatic force in the domain dynamics in a rate-limiting phosphoenzyme (EP) transition by a systematic approach combining electrostatic screening with salts, computer analysis of electric fields in crystal structures, and mutations. Low KCl concentration activated and increasing salt above 0.1 m inhibited the EP transition. A plot of the logarithm of the transition rate versus the square of the mean activity coefficient of the protein gave a linear relationship allowing division of the activation energy into an electrostatic component and a non-electrostatic component in which the screenable electrostatic forces are shielded by salt. Results show that the structural change in the transition is sterically restricted, but that strong electrostatic forces, when K+ is specifically bound at the P domain, come into play to accelerate the reaction. Electric field analysis revealed long-range electrostatic interactions between the N and P domains around their hinge. Mutations of the residues directly involved and other charged residues at the hinge disrupted in parallel the electric field and the structural transition. Favorable electrostatics evidently provides a low energy path for the critical N domain motion toward the P domain, overcoming steric restriction. The systematic approach employed here is, in general, a powerful tool for understanding the structural mechanisms of enzymes.  相似文献   
3.
4.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   
5.
Summary The XylS protein is the positive regulator of the TOL plasmid-encoded meta-cleavage pathway for the metabolism of alkylbenzoates in Pseudomonas putida. This protein is activated by a variety of benzoate analogues. To elucidate the functional domains of the regulator and their interactions, several fusions of the XylS C-terminus to MS2 polymerase and of the N-terminus to -galactosidase were constructed but all are inactive. In addition, 15 double mutant xylS genes were constructed in vitro by fusing parts of various mutant genes to produce mutant regulators exhibiting C-terminal and N-terminal amino acid substitutions. The phenotypic properties of the parental single mutant genes, and those of the double mutant genes, suggest that the C-terminal region is involved in binding to DNA sequences at the promoter of the meta-cleavage pathway operon, and that the benzoate effector binding pocket includes critical residues present at both the N-terminal and C-terminal ends of the protein. The intraallelic dominance of the Ile229 (Ser229 Ile) and Val274 (Asp274 Val) substitutions over the N-terminal His4l (Arg4l His) substitution, and the intraallelic dominance of Thr45 (Arg45 Thr) over Ile229 and Val274, support the proposal that these two regions of the regulator interact functionally. Combination of the Leu88 (Trp88 Leu) and Arg256 (Pro256 Arg) substitutions did not suppress the semiconstitutive phenotype conferred by Leu88, but resulted in a protein with altered ability to recognize benzoates. In contrast, the Leu88 semiconstitutive phenotype was suppressed by Va1288 (Asp288 Val), and the double mutant was susceptible to activation by benzoates. The results suggest that intramolecular interactions between the C- and N-terminal regions of XylS are critical for activation of the regulator by the effector.  相似文献   
6.
SH2D5 is a mammalian-specific, uncharacterized adaptor-like protein that contains an N-terminal phosphotyrosine-binding domain and a C-terminal Src homology 2 (SH2) domain. We show that SH2D5 is highly enriched in adult mouse brain, particularly in Purkinjie cells in the cerebellum and the cornu ammonis of the hippocampus. Despite harboring two potential phosphotyrosine (Tyr(P)) recognition domains, SH2D5 binds minimally to Tyr(P) ligands, consistent with the absence of a conserved Tyr(P)-binding arginine residue in the SH2 domain. Immunoprecipitation coupled to mass spectrometry (IP-MS) from cultured cells revealed a prominent association of SH2D5 with breakpoint cluster region protein, a RacGAP that is also highly expressed in brain. This interaction occurred between the phosphotyrosine-binding domain of SH2D5 and an NxxF motif located within the N-terminal region of the breakpoint cluster region. siRNA-mediated depletion of SH2D5 in a neuroblastoma cell line, B35, induced a cell rounding phenotype correlated with low levels of activated Rac1-GTP, suggesting that SH2D5 affects Rac1-GTP levels. Taken together, our data provide the first characterization of the SH2D5 signaling protein.  相似文献   
7.
It is often essential to focus the study on the small-size domains of large proteins in eukaryotic cells in the post-genomic era, but the low expression level, insolubility, and instability of the domains have been continuing to hinder the massive purification of domain peptides for structural and biological investigation. In this work, a highly efficient expression and purification system based on a small-size fusion partner GB1 and histidine tag was utilized to solve these problems. Two vectors, namely pGBTNH and pGBH, were constructed to improve expression and facilitate purification. The linker and thrombin cleavage site have been optimized for minimal degradation during purification process. This system has been tested for eight domain peptides varying in size, linker, hydrophobicity, and predicted secondary structure. The results indicate that this system is achievable to produce these domain peptides with high solubility and stability for further biochemical characterization. Moreover, the fusion protein without the linker and thrombin cleavage site is also suitable for spectroscopic studies especially for NMR structural elucidation, if the target peptide is prone to precipitation or easily degraded during purification. This system will be beneficial to the research field of structure and function of small domain and peptide fragment.  相似文献   
8.
登革病毒(Dengue virus,DENV)属于黄病毒科(Flaviviridae),黄病毒属(Flavivirus),为单股正链RNA病毒,有4个不同的血清型(DENV-1,2,3,4),主要通过埃及伊蚊(Aedes aegypti)和白纹伊蚊(Aedes albopictus)传播,可引起登革热、登革出血热、登革休克综合征等多种疾病。  相似文献   
9.
14-3-3 proteins regulate key processes in eukaryotic cells including nitrogen assimilation in plants by tuning the activity of nitrate reductase (NR), the first and rate-limiting enzyme in this pathway. The homodimeric NR harbors three cofactors, each of which is bound to separate domains, thus forming an electron transfer chain. 14-3-3 proteins inhibit NR by binding to a conserved phosphorylation site localized in the linker between the heme and molybdenum cofactor-containing domains. Here, we have investigated the molecular mechanism of 14-3-3-mediated NR inhibition using a fragment of the enzyme lacking the third domain, allowing us to analyze electron transfer from the heme cofactor via the molybdenum center to nitrate. The kinetic behavior of the inhibited Mo-heme fragment indicates that the principal point at which 14-3-3 acts is the electron transfer from the heme to the molybdenum cofactor. We demonstrate that this is not due to a perturbation of the reduction potentials of either the heme or the molybdenum center and conclude that 14-3-3 most likely inhibits nitrate reductase by inducing a conformational change that significantly increases the distance between the two redox-active sites.  相似文献   
10.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号