首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   0篇
  国内免费   3篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
21.

Background

Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3β, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity.

Methods

GSK-3β was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3β knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated.

Results

In vitro, both knock-down as well as pharmacological inhibition of GSK-3β not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid β-oxidation. In addition, GSK-3β KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals.

Conclusion

Inactivation of GSK-3β stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.  相似文献   
22.
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.  相似文献   
23.
Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active.  相似文献   
24.
A novel yeast species was isolated from leaf litter of Macropanax dispermus obtained from the Cibodas Botanical Garden, West Java, Indonesia. The two strains of the species displayed typical characteristics of the genus Citeromyces. Phylogenetic analysis based on the gene sequences of the D1/D2 domains of large subunit (LSU) rDNA, internal transcribed spacer (ITS) including 5.8S rDNA, mitochondrial small-subunit rRNA gene (MtSm), and translation elongation factor-1α (EF-1α) showed that the novel strains were clearly separated from the other four existing species of the genus Citeromyces. Therefore, the two strains were proposed to represent a novel species within the genus Citeromyces, for which the name Citeromyces cibodasensis is proposed; the type strain is NBRC 110244T (= CBS 14272T?=?InaCCY703T?=?AK 01).  相似文献   
25.
Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363–369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60?h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.  相似文献   
26.
27.
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered.  相似文献   
28.
Zusammenfassung An der Schilddrüse von Wistar-Ratten wurde der Einfluß der Kost (Laborstandardkost, halbsynthetische-tocopherolhaltige und halbsynthetische-tocopherol-freie Kost) und der subkutanen Injektion von Tocopherol und Tocopherolchinon auf die Ultrastruktur der C-Zellen untersucht. Während nach Standardfütterung die Aktivität der C-Zellen der Norm entspricht, werden Syntheseleistung und Sekretabgabe dieser Zellelemente durch die halbsynthetische-tocopherolhaltige Kost gesteigert und im alimentären Tocopherol-Ubichinonmangel wieder gedämpft. Der elektronenmikroskopisch erkennbare Gehalt der C-Zellen an Sekretgranula entspricht der in vitro ermittelten Calcitoninaktivität. Die Beziehungen zwischen den Funktionskreisen von Thyreozyten und Calcitoninzellen werden diskutiert.
Ultrastructural studies of the C-cells of the rat thyroidThe influence of tocopherol/ubiquinone deficiency on the ultrastructure of C-Cells
Summary The influence of different diets (standard laboratory diet, semisynthetic tocopherol-containing and semisynthetic tocopherol-free diet) and the influence of subcutaneous injections of tocopherol and tocopherolquinone upon the ultrastructure of the C-cells in the thyroid gland of Wistar rats were investigated. While the activity of the C-cells is quite normal after feeding a standard diet, the synthetic and secretory activities of these cells show an increase with a semisynthetic diet containing tocopherol, but a decrease during alimentary lack of tocopherol and tocopherolquinone. The amount of secretory granules in the C-cells as seen with the electron microscope corresponds with the in vitro-activity of extracted calcitonin. The relations between the functional system of the thyrocytes and that of the C-cells are discussed.
  相似文献   
29.
Three alternatives of the mode of branching in the ubiquinone-cytochrome b region of the anaerobic respiratory chain of Paracoccus denitrificans were experimentally tested. It was found that the view that the constitutive cytochrome b-560 or b-566 serves as an electron donor for the nitrate reductase is incompatible with the proposed scheme of the cyclic electron flow in the bc1 segment. By means of the extraction procedure, the extent of reduction of ubiquinone was determined in cells utilizing oxygen and nitrate in the presence of antimycin. It was found that the redox response of ubiquinone was consistent with what had been predicted by the pool model of Kröger and Klingenberg, extended for more than one terminal acceptor. Our results are in support of the assumption that in cells of P. denitrificans ubiquinol (QH2) has a function of an electron donor both for nitrate reductase and cytochrome o.  相似文献   
30.
《Free radical research》2013,47(6):375-386
In order to evaluate different mitochondrial antioxidant systems, the depletion of alpha-tocopherol and the levels of the reduced and oxidized forms of CoQ were measured in rat liver mitochondria during Fe++/ascorbate and NADPH/ADP/Fe++ induced lipid peroxidation. During the induction phase of malondialdehyde formation, alpha-tocopherol declined moderately to about 80% of initial contents, whereas the total CoQ pool remained nearly unchanged, but reduced CoQ9 continuously declined. At the start of massive malondialdehyde formation, CoQ9 reaches its fully oxidized state. At the same time alpha-tocopherol starts to decline steeply, but never becomes fully exhausted in both experimental systems. Evidently the oxidation of the CoQ9 pool constitutes a prerequisite for the onset of massive lipid peroxidation in mitochondria and for the subsequent depletion of alpha-tocopherol. Trapping of the GSH by addition of dinitrochlorbenzene (a substrate of the GSH transferase), results in a moderate acceleration of lipid peroxidation, but alpha-tocopherol and ubiquinol levels remained unchanged when compared with the controls. Addition of succinate to GSH depleted mitochondria effectively suppressed MDA formation as well as alpha-tocopherol and ubiquinol depletion. The data support the assumption that the protective effect of respiratory substrates against lipid peroxidation in the absence of mitochondrial GSH is mediated by the regeneration of the lipid soluble antioxidants CoQ and alpha-tocopherol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号