首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   0篇
  国内免费   3篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
101.
The structural organization of the mitochondrial oxidative phosphorylation (OXPHOS) system has received large attention in the past and most investigations led to the conclusion that the respiratory enzymatic complexes are randomly dispersed in the lipid bilayer of the inner membrane and functionally connected by fast diffusion of smaller redox components, Coenzyme Q and cytochrome c. More recent investigations by native gel electrophoresis, however, have shown the existence of supramolecular associations of the respiratory complexes, confirmed by electron microscopy analysis and single particle image processing. Flux control analysis has demonstrated that Complexes I and III in mammalian mitochondria and Complexes I, III, and IV in plant mitochondria kinetically behave as single units with control coefficients approaching unity for each single component, suggesting the existence of substrate channelling within the supercomplexes. The reasons why the presence of substrate channelling for Coenzyme Q and cytochrome c was overlooked in the past are analytically discussed. The review also discusses the forces and the conditions responsible for the formation of the supramolecular units. The function of the supercomplexes appears not to be restricted to kinetic advantages in electron transfer: we discuss evidence on their role in the stability and assembly of the individual complexes and in preventing excess oxygen radical formation. Finally, there is increasing evidence that disruption of the supercomplex organization leads to functional derangements responsible for pathological changes.  相似文献   
102.
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis.  相似文献   
103.
The conventional method of assaying for the ubiquinone (CoQ) content of biological samples is to partition CoQ into an organic phase and separate it from contaminants by high-performance liquid chromatography (HPLC). HPLC is an accurate method of quantifying CoQ content but is not ideal for routine clinical analyses. This paper describes the development of a rapid method for assaying the CoQ content of biological samples based on the binding of CoQ to a CoQ binding peptide. The 14-amino acid binding peptide was chemically synthesized, and conditions for immobilizing the peptide on microfuge tubes were established. CoQ could be selectively bound to the immobilized peptide, eluted, and determined spectrophotometrically. Limits of detection for the method were 0.25 to 5 nmol CoQ. To test biological samples, CoQ was isolated from cultures of Saccharomyces cerevisiae grown in oleic acid medium. The recovery of CoQ samples using the binding assay ranged from 99 to 102% of the values obtained with HPLC. The assay described here provides an inexpensive, rapid method for determining the CoQ content of large numbers of biological samples in a variety of laboratory settings.  相似文献   
104.
105.
Ubiquinol is considered to serve as an endogenous antioxidant. However, the mechanism by which the redox state of intracellular ubiquinone (UQ) is maintained is not well established. The effect of dicumarol, an inhibitor of NAD(P)H: quinone acceptor oxidoreductase 1 (NQO1=DT-diaphorase, EC 1.6.99.2), on the reduction of UQ in cultured rat hepatocytes was investigated in order to clarify whether or not NQO1 is involved in reducing intracellular UQ. A concentration of 5 μM dicumarol, which does not inhibit cytosolic NADPH-dependent UQ reductase in vitro , was observed to almost completely inhibit NQO1 and thereby to stimulate cytotoxicity of 2-methyl-1,4-naphthoquinone (menadione) in cultured rat hepatocytes. However, 5 μM dicumarol did not inhibit reduction of endogenous UQ-9, as well as exogenous UQ-10 added to the hepatocytes. In addition, it did not stimulate the formation of thiobarbituric acid reactive substances (TBARS) in the hepatocytes. These results suggested that NQO1 is not involved in maintaining UQ in the reduced state in the intact liver cells.  相似文献   
106.
Strong evidence for a random collisional mechanism for ubiquinone-mediated electron transfer is provided by the characteristic kinetic properties of respiratory chains originally explored by Kröger, A., and Klingenberg, M. (1973),Eur. J. Biochem. 34, 313–323. A kinetic model which leads to this so-called simple Q-pool behavior has been described and we use this in reviewing evidence that electron transfer is diffusion-controlled as well as diffusion-coupled. We also consider mechanisms by which the kinetics of electron transfer might deviate from simple Q-pool behavior and how these might be implicated in the regulation of electron transport.  相似文献   
107.
The different possible dispositions of the electron transfer components in electron transfer chains are discussed: (a) random distribution of complexes and ubiquinone with diffusion-controlled collisions of ubiquinone with the complexes, (b) random distribution as above, but with ubiquinone diffusion not rate-limiting, (c) diffusion and collision of protein complexes carrying bound ubiquinone, and (d) solid-state assembly. Discrimination among these possibilities requires knowledge of the mobility of the electron transfer chain components. The collisional frequency of ubiquinone-10 with the fluorescent probe 12-(9-anthroyl)stearate, investigated by fluorescence quenching, is 2.3 × 109 M–1 sec–1 corresponding to a diffusion coefficient in the range of 10–6 cm2/sec (Fato, R., Battino, M., Degli Esposti, M., Parenti Castelli, G., and Lenaz, G.,Biochemistry,25, 3378–3390, 1986); the long-range diffusion of a short-chain polar Q derivative measured by fluorescence photobleaching recovery (FRAP) (Gupte, S., Wu, E. S., Höchli, L., Höchli, M., Jacobson, K., Sowers, A. E., and Hackenbrock, C. R.,Proc. Natl. Acad. Sci. USA 81, 2606–2610, 1984) is 3×10–9 cm2/sec. The discrepancy between these results is carefully scrutinized, and is mainly ascribed to the differences in diffusion ranges measured by the two techniques; it is proposed that short-range diffusion, measured by fluorescence quenching, is more meaningful for electron transfer than long-range diffusion measured by FRAP, or microcollisions, which are not sensed by either method. Calculation of the distances traveled by random walk of ubiquinone in the membrane allows a large excess of collisions per turnover of the respiratory chain. Moreover, the second-order rate constants of NADH-ubiquinone reductase and ubiquinol-cytochromec reductase are at least three orders of magnitude lower than the second-order collisional constant calculated from the diffusion of ubiquinone. The activation energies of either the above activities or integrated electron transfer (NADH-cytochromec reductase) are well above that for diffusion (found to be ca. 1 kcal/mol). Cholesterol incorporation in liposomes, increasing bilayer viscosity, lowers the diffusion coefficients of ubiquinone but not ubiquinol-cytochromec reductase or succinate-cytochromec reductase activities. The decrease of activity by ubiquinone dilution in the membrane is explained by its concentration falling below theK m of the partner enzymes. It is calculated that ubiquinone diffusion is not rate-limiting, favoring a random model of the respiratory chain organization. It is not possible, however, to exclude solid-state assemblies if the rate of dissociation and association of ubiquinone is faster than the turnover of electron transfer.  相似文献   
108.
A moderately thermophilic, facultatively chemolithoautotrophic thiobacillus isolated from a thermal sulphur spring is described. It differs from all other species currently known to be in culture. It grows lithoautotrophically on thiosulphate, trithionate or tetrathionate, which are oxidized to sulphate. Batch cultures on thiosulphate do not produce tetrathionate, but do precipitate elemental sulphur during growth. In autotrophic chemostat cultures the organism produces yields on thiosulphate, trithionate and tetrathionate that are among the highest observed for a Thiobacillus. Autotrophic cultures contain ribulose bisphosphate carboxylase. Heterotrophic growth has been observed only on complex media such as yeast extract and nutrient broth. It is capable of autotrophic growth and denitrification under anaerobic conditions with thiosulphate and nitrate. It grows between 30 to 55° C, and pH 7 to 9, with best growth at about 43°C and pH 7.6. It contains ubiquinone Q-8, and its DNA contains 65.7 mol% G+C. The organism is formally described and named as Thiobacillus aquaesulis.Now the Department of Biological Sciences  相似文献   
109.
Published experimental data pertaining to the participation of coenzyme Q as a site of free radical formation in the mitochondrial electron transfer chain and the conditions required for free radical production have been reviewed critically. The evidence suggests that a component from each of the mitochondrial NADH-coenzyme Q, succinate-coenzyme Q, and coenzyme QH2-cytochrome c reductases (complexes I, II, and III, most likely a nonheme iron-sulfur protein of each complex, is involved in free radical formation. Although the semiquinone form of coenzyme Q may be formed during electron transport, its unpaired electron most likely serves to aid in the dismutation of superoxide radicals instead of participating in free radical formation. Results of studies with electron transfer chain inhibitors make the conclusion dubious that coenzyme Q is a major free radical generator under normal physiological conditions but may be involved in superoxide radical formation during ischemia and subsequent reperfusion. Experiments at various levels of organization including subcellular systems, intact animals, and human subjects in theclinical setting, support the view that coenzyme Q, mainly in its reduced state, may act as an antioxidant protecting a number of cellular membranes from free radical damage.  相似文献   
110.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c2 oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c1 and c2, the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0–3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c1 and c2, and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 ix oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c2 oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c1 and c2 is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号