首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   571篇
  免费   82篇
  国内免费   14篇
  667篇
  2023年   10篇
  2022年   11篇
  2021年   15篇
  2020年   29篇
  2019年   33篇
  2018年   15篇
  2017年   27篇
  2016年   14篇
  2015年   15篇
  2014年   28篇
  2013年   38篇
  2012年   26篇
  2011年   22篇
  2010年   9篇
  2009年   19篇
  2008年   16篇
  2007年   24篇
  2006年   18篇
  2005年   14篇
  2004年   13篇
  2003年   18篇
  2002年   12篇
  2001年   8篇
  2000年   10篇
  1999年   16篇
  1998年   8篇
  1997年   11篇
  1996年   13篇
  1995年   14篇
  1994年   22篇
  1993年   20篇
  1992年   14篇
  1991年   17篇
  1990年   10篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   6篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   6篇
  1981年   7篇
  1980年   7篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
排序方式: 共有667条查询结果,搜索用时 15 毫秒
71.
In this study, we investigated the effects of alternating tangential flow (ATF) cell separation on high-density perfusion cultures. We have developed methods to estimate theoretical residence times of cells in the ATF system and discovered that long residence times (above 75 s) correlate with decreased growth, metabolism, and productivity. We have calculated energy dissipation rates in the ATF transfer line and filter and empirically studied the impacts of increased exchange rates on cell culture, determining that increased hydrodynamic stress can lead to decreased cell size, lactate production, and specific productivity. Finally, we have conducted experiments to understand the relationship between filtration fluxes and ATF membrane fouling, finding that at fluxes above 60 L·m–2·day –1, protein sieving coefficients see significant rates of decrease (greater than 1% per day). While most of these studies have been conducted with one cell line at one target viable cell density (40 million cells/ml), the general, directional knowledge arising from this study should be applicable to other conditions and programs, ultimately leading to more robust and well-designed perfusion processes.  相似文献   
72.
Perfusion cultures of CHO cells producing t-PA were performed using acoustic filter cell retention. A robust off-line glucose analysis and predictive control protocol was developed to maintain the process within approximately 0.5 mM of the glucose set point, without the need for a more fallible on-line sensor. Glucose usage (the difference between the inlet and reactor glucose concentrations) provided an easily measured indicator of overall medium utilization for mapping acceptable ranges of operation, including the edge of failure. Earlier onset of perfusion with a ramping glucose set point (1.5 mM/d) resulted in improved growth and consistency during the perfusion culture start-up. At steady state, the t-PA concentration variability increased gradually with increasing glucose usage up to approximately 22 mM, then up to 24 mM the variability increased threefold. Peak t-PA concentrations of over 90 mg/L were obtained by controlling at a glucose usage of approximately 24 mM, but these t-PA levels were not sustainable for more than 3 days. A consistent t-PA concentration of 40 mg/L was obtained at a glucose usage of 21.5 mM.  相似文献   
73.
Diltiazem causes vasoconstriction in the liver when present at high concentrations, an action that is strictly Ca2+-dependent. Diltiazem is also active on energy metabolism. This toxic action could be partly a consequence of hemodynamic effects. In the absence of Ca2+, the hemodynamic effects are no longer present and, consequently, Ca2+-free experiments are useful for distinguishing between hemodynamics-dependent and hemodynamics-independent effects. The experimental system used was the hemoglobin-free perfused rat liver from fed and fasted rats. Diltiazem was infused at various concentrations in the presence and absence of Ca2+. Several metabolic parameters were measured: lactate and pyruvate production (glycolysis), glycogenolysis, oxygen uptake, gluconeogenesis, and the cellular levels of lactate, pyruvate, glucose, AMP, ADP, and ATP. The effects of diltiazem can be divided into three groups: (1) Effects that are strictly dependent on the Ca2+-mediated hemodynamic action. This group comprises inhibition of oxygen uptake at all concentrations (50–500 mol/L) inhibition of lactate, pyruvate, and glucose release at high concentrations; the decrease in cellular ATP; the increase in cellular AMP; and the cellular accumulation of glucose and lactate. (2) Effects that are independent of the hemodynamic action. The most relevant effect of this type is inhibition of gluconeogenesis. (3) Effects that are influenced by Ca2+ but are independent of the hemodynamic effects. This is the typical case of lactate and glucose release from endogenous glycogen, whose stimulation by low diltiazem concentrations is more pronounced in the presence of Ca2+ than in its absence.  相似文献   
74.
The charge-pulse relaxation spectrum of nonperfused and perfused (turgescent) cells of the giant marine alga Ventricaria ventricosa showed two main exponential decays with time constants of approximately 0.1 msec and 10 msec, respectively, when the cells were bathed in artificial sea water (pH 8). Variation of the external pH did not change the relaxation pattern (in contrast to other giant marine algae). Addition of nystatin (a membrane-impermeable and pore-forming antibiotic) to the vacuolar perfusion solution resulted in the disappearance of the slow exponential, whereas external nystatin decreased dramatically the time constant of the fast one. This indicated (by analogy to corresponding experiments with Valonia utricularis, J. Wang, I. Spiess, C. Ryser, U. Zimmermann, J. Membrane Biol. 157: 311-321, 1997) that the fast relaxation must be assigned to the RC-properties of the plasmalemma and the slow one to those of the tonoplast. Consistent with this, external variation of [K+]o or of [Cl-]o as well as external addition of K+- or Cl--channel/carrier inhibitors (TEA, Ba2+, DIDS) affected only the fast relaxation, but not the slow one. In contrast, addition of these inhibitors to the vacuolar perfusion solution had no measurable effect on the charge-pulse relaxation spectrum. The analysis of the data in terms of the "two membrane model" showed that K+- and (to a smaller extent) Cl--conducting elements dominated the plasmalemma conductance. The analysis of the charge-pulse relaxation spectra also yielded the following area-specific data for the capacitance and the conductance for the plasmalemma and tonoplast (by assuming that both membranes have a planar surface): (plasmalemma) Cp = 0.82 * 10(-2) F m-2, Rp = 1.69 * 10(-2) Omega m2, Gp = 5.9 * 10(4) mS m-2, (tonoplast) Ct = 7. 1 * 10(-2) F m-2, Rt = 14.9 * 10(-2) Omega m2 and Gt = 0.67 * 10(4) mS m-2. The electrical data for the tonoplast show that (in contrast to the literature) the area-specific membrane resistance of the tonoplast of these marine giant algal cells is apparently very high as reported already for V. utricularis. The exceptionally high value of the area-specific capacitance could be explained - among other interpretations - by assuming a 9-fold enlargement of the tonoplast surface. The hypothesis of a multifolded tonoplast was supported by transmission electronmicroscopy of cells fixed under maintenance of turgor pressure and of the electrical parameters of the membranes. This finding indicates that the tonoplast of this species exhibited a sponge-like appearance. Taking this result into account, it can be easily shown that the tonoplast exhibits a high-resistance (1.1 Omega m2). Vacuolar membrane potential measurements (performed in parallel with charge-pulse relaxation studies) showed that the potential difference across the plasmalemma was mainly controlled by the external K+-concentration which suggested that the resting membrane potential of the plasmalemma is largely a K+-diffusion potential. After permeabilization of the tonoplast with nystatin the potential of the intact membrane barrier dropped from about slightly negative or positive (-5.1 to +18 mV, n = 13) to negative values (-15 up to -68 mV; n = 8). This indicated that the cytoplasm of V. ventricosa was apparently negatively charged relative to the external medium. Permeabilization of the plasmalemma by addition of external nystatin resulted generally in an increase in the potential to slightly more positive values (-0.8 to +4.3 mV; n = 5), indicating that the vacuole is positively charged relative to the cytoplasm. These findings apparently end the long-term debate about the electrical properties of V. ventricosa. The results presented here support the findings of Davis (Plant Physiol. 67: 825-831, 1981), but are contrary to the results of Lainson and Field (J. Membrane Biol. 29: 81-94, 1976).  相似文献   
75.
The heterogeneity of the liver parenchyma in relation to uric acid production from adenosine was investigated using the bivascularly perfused rat liver in the anterograde and retrograde modes. Adenosine was infused in livers from fed rats during 20 min at four different concentrations (20, 50, 100 and 200 M) according to four experimental protocols as follows: (A) anterograde perfusion, with adenosine infusion into the portal vein; (B) anterograde perfusion, with adenosine in the hepatic artery, (C) retrograde perfusion, with adenosine in the hepatic vein; (D) retrograde perfusion, with adenosine in the hepatic artery. With protocols A, B, and D uric acid production from adenosine was always characterized by initial bursts followed by progressive decreases toward smaller steady-states. With protocol C the initial burst was present only when 200 M adenosine was infused. The initial bursts in uric acid production were accompanied by simultaneous increases in the ratio of uric acid production/adenosine uptake rate. These initial bursts are thus representing increments in the production of uric acid that are not corresponded by similar increments in the metabolic uptake rates of adenosine. Global analysis of uric acid production revealed that the final steady-state rates were approximately equal for all infusion rates with protocols A, B and C, but smaller with protocol D. This difference, however, can be explained in terms of the differences in accessible cellular spaces, which are much smaller when protocol D is employed. When the analysis was performed in terms of the extra amounts of uric acid produced during the infusion of adenosine, where the initial bursts are also taken into account, different dose-response curves were found for each experimental protocol. These differences cannot be explained in terms of the accessible cell spaces and they are likely to reflect regional heterogeneities. From the various dose-response curves and from the known characteristics of the microcirculation of the rat liver it can be concluded that the initial bursts in uric acid production are generated in periportal hepatocytes. The reason for this heterogeneity could be related to the metabolic effects of adenosine, especially to oxygen uptake inhibition, which is likely to produce changes in the ATP/AMP ratios.  相似文献   
76.
Intestinal metabolism of the subtoxic level of selenite in rats was investigated using a double-perfusion system, which is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. The toxicity of sodium selenite was determined by inhibition of 3-O-methyl glucose (3MG) absorption and by histological examination. Levels of 1.2 mM selenite were required to significantly (p<0.05) reduce 3MG intestinal absorption (58±11%, mean±SD). Cation-exchange chromatography was used to determine the chemical forms of Se from selenite after using luminal concentrations of 1–200 μM in vascular perfusates. The chemical forms were selenite, selenodiglutathione (GS-Se-SG), mixed selenoglutathione plus cysteine (GS-Se-CYS), selenodicysteine (CYS-Se-CYS), protein-bound Se, and unidentified selenocompounds. Selenite was the predominant selenocompound found in vascular perfusate, but protein-bound Se was the predominant metabolite from selenite present in the vascular effuents. There was a corresponding increase of all metabolites with increased levels of selenite with time of absorption, but not with increased concentration of luminal selenite.  相似文献   
77.
Somatostatin suppresses ghrelin secretion from the rat stomach   总被引:6,自引:0,他引:6  
Ghrelin is an acylated peptide that stimulates food intake and the secretion of growth hormone. While ghrelin is predominantly synthesized in a subset of endocrine cells in the oxyntic gland of the human and rat stomach, the mechanism regulating ghrelin secretion remains unknown. Somatostatin, a peptide produced in the gastric oxyntic mucosa, is known to suppress secretion of several gastrointestinal peptides in a paracrine fashion. By double immunohistochemistry, we demonstrated that somatostatin-immunoreactive cells contact ghrelin-immunoreactive cells. A single intravenous injection of somatostatin reduced the systemic plasma concentration of ghrelin in rats. Continuous infusion of somatostatin into the gastric artery of the vascularly perfused rat stomach suppressed ghrelin secretion in both dose- and time-dependent manner. These findings indicate that ghrelin secretion from the stomach is regulated by gastric somatostatin.  相似文献   
78.
Effects of oxygen on engineered cardiac muscle   总被引:6,自引:0,他引:6  
Concentration gradients associated with the in vitro cultivation of engineered tissues that are vascularized in vivo result in the formation of only a thin peripheral tissue-like region (e.g., approximately 100 microm for engineered cardiac muscle) around a relatively cell-free interior. We previously demonstrated that diffusional gradients within engineered cardiac constructs can be minimized by direct perfusion of culture medium through the construct. In the present study, we measured the effects of medium perfusion rate and local oxygen concentration (p(O2)) on the in vitro reconstruction of engineered cardiac muscle. Neonatal rat cardiomyocytes were seeded onto biodegradable polymer scaffolds (fibrous discs, 1.1 cm diameter x 2 mm thick, made of polyglycolic acid, 24 x 10(6) cells per scaffold). The resulting cell-polymer constructs were cultured for a total of 12 days in serially connected cartridges (n = 1-8), each containing one construct directly perfused with culture medium at a flow rate of 0.2-3.0 mL/min. In all groups, oxygen concentration decreased due to cell respiration, and depended on construct position in the series and medium flow rate. Higher perfusion rates and higher p(O2) correlated with more aerobic cell metabolism, and higher DNA and protein contents. Constructs cultured at p(O2) of 160 mm Hg had 50% higher DNA and protein contents, markedly higher expression of sarcomeric alpha-actin, better organized sarcomeres and cell junctions, and 4.5-fold higher rate of cell respiration as compared to constructs cultured at p(O2) of 60 mm Hg. Contraction rates of the corresponding cardiac cell monolayers were 40% higher at p(O2) of 160 than 60 mm Hg. The control of oxygen concentration in cell microenvironment can thus improve the structure and function of engineered cardiac muscle. Experiments of this kind can form a basis for controlled studies of the effects of oxygen on the in vitro development of engineered tissues.  相似文献   
79.
Since 1969 much attention has been devoted to the useof spinfilter systems for retention of mammalian cellsin continuous perfusion cultivations. Previousinvestigations dealt with hydrodynamic conditions,fouling processes and upscaling. But hydrodynamicconditions and fouling processes seem to have asecondary importance in spinfilter performance duringauthentic perfusion cultivations. Obviously,alterations in culture condition are more relevantespecially during long-term processes. Therefore, ourpratical approach focussed on the performance qualityof a commercially available 20 m spinfilterduring a perfusion cultivation of a recombinant CHOcell line in pilot scale regarding the followingissues: 1) retention of viable cells in thebioreactor; 2) removal of dead cells and cell debrisfrom the bioreactor; 3) alterations in culturecondition; and 4) changes in perfusion mode.Furthermore, we tested the performance of 20 mspinfilters in 2 and 100 l pilot scale using solidmodel particles instead of cells. Our investigationsshowed that retention of viable cells in pilot scalewas independent of spinfilter rotation velocity andperfusion rate; the retention increased from 75 to 95%corresponding to operation time, enlarging celldiameter and enhanced formation of aggregates in theculture during the perfusion cultivation. By means ofthe Cell Counter and Analyzer System (CASY) anoperation cut off of 13 m was determined forthis spinfilter. Using solid model particles in 2 lscale, optimal retention was achieved at a tip speedof 0.43 m s-1 (141 rpm) – furtherenhancement of spinfilter rotation velocity up to0.56 m s-1 (185 rpm) decreased the retentionrapidly. In pilot scale best retention performance wasobtained with tip speeds of 0.37 m s-1(35 rpm) and 1.26 m s-1 (120 rpm). Hence,significant retention in pilot scale could already beachieved with low agitation. Therefore, the additionof shear force protectives could be avoided so thatthe purification of the target protein from thesupernatant would be facilitated.  相似文献   
80.
Kong D  Gentz R  Zhang J 《Cytotechnology》1998,26(2):131-138
Monocyte-colony inhibition factor (M-CIF) was produced in microcarrier perfusion cultures from engineered Chinese hamster ovary (CHO) cells. Three and fifteen liter microcarrier perfusion bioreactors equipped with internal spin filters were operated for over two months. Approximately 60 L and 300 L of culture filtrate were harvested from the 3L and 15L microcarrier perfusion bioreactors respectively. During the perfusion operation, cell density reached 2–6 × 106 cells/ml. Importantly, stable expression of M-CIF from the CHO cells under non-selection condition was maintained at a level of 4–10 mg/L. Specific productivity was maintained at 1.8–3.4 mg/billion cells/day. The ability of the recombinant CHO cells to migrate from microcarrier to microcarrier under our proprietary HGS-CHO-3 medium greatly facilitated microcarrier culture scale-up and microcarrier replenishment. Future directions for microcarrier perfusion system scale-up and process development are highlighted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号