首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50265篇
  免费   2831篇
  国内免费   5248篇
  2023年   783篇
  2022年   1031篇
  2021年   1505篇
  2020年   1430篇
  2019年   1861篇
  2018年   1483篇
  2017年   1234篇
  2016年   1277篇
  2015年   1576篇
  2014年   2483篇
  2013年   3347篇
  2012年   2174篇
  2011年   2541篇
  2010年   2020篇
  2009年   2448篇
  2008年   2637篇
  2007年   2807篇
  2006年   2716篇
  2005年   2480篇
  2004年   2274篇
  2003年   2050篇
  2002年   1844篇
  2001年   1472篇
  2000年   1199篇
  1999年   1147篇
  1998年   1046篇
  1997年   896篇
  1996年   898篇
  1995年   825篇
  1994年   776篇
  1993年   575篇
  1992年   531篇
  1991年   442篇
  1990年   388篇
  1989年   296篇
  1988年   313篇
  1987年   296篇
  1986年   242篇
  1985年   308篇
  1984年   389篇
  1983年   281篇
  1982年   316篇
  1981年   240篇
  1980年   259篇
  1979年   241篇
  1978年   196篇
  1977年   149篇
  1976年   141篇
  1975年   114篇
  1974年   117篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
白细胞介素2-绿脓杆菌外毒素融合基因的克隆及高效表达   总被引:2,自引:0,他引:2  
利用聚合酶链式反应和寡核苷酸介导的定向诱变技术构建了白细胞介素2-绿脓杆菌外毒素IL2-PE40、IL2-PE40KDEL、IL2-PE66~(4Glu)和IL2-PE66~(4Glu)KDEL融合基因的原核表达重组质粒,并实现了高效表达,表达产物占菌体总可溶蛋白的20%~30%。此外,由于这一表达质粒在IL-2cDNA与PE基因连接处引入了唯一的SmaⅠ位点,其5'、3'端分别含有唯一的EcoRⅠ、PstⅠ位点,因此可方便地用其它基因替换IL-2或PE基因而获得相应融合蛋白的表达质粒。  相似文献   
942.
943.
利用PCR技术,以中国人促红细胞生成素(EPO)次全基因组为模板,进行了基因修补和重组,克隆出EPO cDNA全序列。同时发现中国人EPO cDNA与国外的克隆比较有一个核苷酸的差异,导致第62位氨基酸是丝氨酸,不是亮氨酸。将人EPO cDNA基因插入表达载体pSV2-dhfr中的不同克隆位点,构建了6种不同的转移载体质粒,即pSV2-dhfr/F1,pSV2/N2,pSV2-dhfr/F3,pSV2-dhfr/P4,pSV2-dhfr/G1和pSV2-dhfr/G3。将它们分别转染导入COS-7细胞,结果表明6种转移载体质粒转染的细胞上清液都有明显的EPO活性。人EPO cDNA基因转移载体质粒在COS-7细胞中的表达水平高于人次全EPO基因组转移载体质粒。  相似文献   
944.
    
Summary The IASRYDQL synthetic octapeptide (250–257) of the Leishmania major surface glycoprotein gp63 efficiently inhibits parasite attachment to the macrophage receptors in in vitro experiments, and the SRYD-containing tetrapeptide mimics antigenically and functionally the RGDS sequence of fibronectin. The conformational properties of the octapeptide were investigated in dimethylsulfoxide (DMSO) with the combined use of NMR data (vicinal coupling constants, nuclear Overhauser effects (NOEs) and temperature coefficient values), molecular modeling by energy minimization and molecular dynamics. The structure is characterized by the high occurrence, exceeding 95%, of the Arg-Asp side-chain-side-chain ionic interaction, which plays a key role in the backbone folding through a distorted type-I -turn involving the Gln256-NH to Arg253-CO hydrogen bond.  相似文献   
945.
Summary The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b0,+ -like and y+L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b0,+-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (~20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.  相似文献   
946.
Summary The unusual amino acid hypusine [N -(4-amino-2-hydroxybutyl)lysine] is a unique component of one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A, old terminology, eIF-4D). It is formed posttranslationally and exclusively in this protein in two consecutive enzymatic reactions, (i) modification of a single lysine residue of the eIF-5A precursor protein by the transfer of the 4-aminobutyl moiety of the polyamine spermidine to its-amino group to form the intermediate, deoxyhypusine [N -(4-aminobutyl)lysine] and (ii) subsequent hydroxylation of this intermediate to form hypusine. The amino acid sequences surrounding the hypusine residue are strictly conserved in all eukaryotic species examined, suggesting the fundamental importance of this amino acid throughout evolution. Hypusine is required for the activity of eIF-5Ain vitro. There is strong evidence that hypusine and eIF-5A are vital for eukaryotic cell proliferation. Inactivation of both of the eIF-5A genes is lethal in yeast and the hypusine modification appears to be a requirement for yeast survival (Schnier et al., 1991 [Mol Cell Biol 11: 3105–3114]; Wöhl et al., 1993 [Mol Gen Genet 241: 305–311]). Furthermore, inhibitors of either of the hypusine biosynthetic enzymes, deoxyhypusine synthase or deoxyhypusine hydroxylase, exert strong anti-proliferative effects in mammalian cells, including many human cancer cell lines. These inhibitors hold potential as a new class of anticancer agents, targeting one specific eukaryotic cellular reaction, hypusine biosynthesis.  相似文献   
947.
 The kinetics of methemoglobin reduction by cytochrome b 5 has been studied by stopped-flow and saturation transfer NMR. A forward rate constant k f = 2.44×104 M–1 s–1 and a reverse rate constant k b = 540 M–1s–1 have been observed at 10 mm, pH 6.20, 25  °C. The ratio k f/k b = k eq = 43.6 is in good agreement with the equilibrium constant calculated from the electrochemical potential between cyt b 5 and methemoglobin. A bimolecular collisional mechanism is proposed for the electron transfer from cyt b 5 to methemoglobin based on the kinetic data analysis. The dependence of the rate constants on ionic strengths supports such collisional mechanism. It is also found that the reaction rate strongly depends on the conformations of methemoglobin. Received: 20 February 1996 / Accepted: 4 June 1996  相似文献   
948.
Insect-resistant poplar (Populus nigra L.) plants have been produced by infecting leaves withAgrobacterium tumefaciens strains carrying a binary vector containing different truncated forms of aBacillus thuringiensis (B.t.) toxin gene under a duplicated CaMV 35S promoter. Putative transgenic plants were propagated by cuttings at two experimental farms (in Beijing and Xinjiang, China). At 2–3 years after transformation, 17 of them were selected on the bases of insect-tolerance and good silvicultural traits, and evaluated for insect resistance, for the presence of theB.t. toxin DNA fragment (Southern blots and PCR) and for the expression of the transgene (western and northern blots). Somaclonal variation, as suggested by the appearance of permanent changes in the shape of the leaves, was also investigated with molecular tools (RFLP (restriction fragment length polymorphism), RAPD (random amplified polymorphic DNA) and microsatellite DNA).Bioassays withApochemia cineraius andLymantria dispar on the leaves of the selected clones showed different and, in some cases, high levels of insecticidal activity. The molecular analysis demonstrated integration and expression of the foreign gene. Somatic changes were correlated to extensive genomic changes and were quantified in dendrograms, in terms of genomic similarity. The analysis of control plants suggested that genomic changes were correlated to thein vitro culture step necessary forA. tumefaciens-mediated gene transfer, rather than to the integration of the foreign genes.Three transgenic clones (12, 153 and 192), selected for insect resistance, reduced morphological changes and promising silvicultural traits, are now under large-scale field evaluation in six different provinces in China.  相似文献   
949.
The FLP recombinase of yeast catalyses site-specific recombination between repeated FLP recombinase target (FRT) elements in yeast and in heterologous system (Escherichia coli, Drosophila, mosquito and cultured mammalian cells). In this report, it is shown that transient FLP recombinase expression can recombine and activate an extrachromosomal silent reporter gene following coinjection into fertilized one-cell mouse eggs. Furthermore, it is demonstrated that introduction of a FLP-recombinase expression vector into transgenic one-cell fertilized mouse eggs induces a recombination event at a chromosomal FRT target locus. The resulting event occured at the one-cell stage and deleted a chromosomal tandem array of a FRT containinglacZ expression cassette down to one or two copies. These results demonstrate that the FLP recombinase can be utilized to manipulate the genome of transgenic animals and suggest that FLP recombinase-mediated plasmid-to-chromosome targeting is feasible in microinjected eggs.  相似文献   
950.
The synthesis of foreign proteins can be targeted to the mammary gland of transgenic animals, thus permitting commercial purification of otherwise unavailable proteins from milk. Genetic regulatory elements from the mouse whey acidic protein (WAP) gene have been used successfully to direct expression of transgenes to the mammary gland of mice, goats and pigs. To extend the practical usefulness of WAP promoter-driven fusion genes and further characterize WAP expression in heterologous species, we introduced a 6.8 kb DNA fragment containing the genomic form of the mouse WAP gene into sheep zygotes. Two lines of transgenic sheep were produced. The transgene was expressed in mammary tissue of both lines and intact WAP was secreted into milk at concentrations estimated to range from 100 to 500 mg/litre. Ectopic WAP gene expression was found in salivary gland, spleen, liver, lung, heart muscle, kidney and bone marrow of one founder ewe. WAP RNA was not detected in skeletal muscle and intestine. These data suggest that unlike pigs, sheep may possess nuclear factors in a variety of tissues that interact with WAP regulatory sequences. Though the data presented are based on only two lines, these findings suggest WAP regulatory sequences may not be suitable as control elements for transgenes in sheep bioreactors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号