首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   5篇
  国内免费   3篇
  115篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   10篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   1篇
  2009年   9篇
  2008年   10篇
  2007年   9篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有115条查询结果,搜索用时 0 毫秒
61.

Backgrounds and Aims

UDP-glucuronosyltransferase 1 A1 (UGT1A1) is an enzyme that transforms small lipophilic molecules into water-soluble and excretable metabolites. UGT1A1 polymorphisms contribute to hyperbilirubinemia. This study quantitatively associated UGT1A1 variants in patients with hyperbilirubinemia and healthy subjects.

Methods

A total of 104 individuals with hyperbilirubinemia and 105 healthy controls were enrolled for genotyping and DNA sequencing UGT1A1 sequence variants, including the Phenobarbital Response enhancer module (PBREM) region, the promoter region (TATA box), and the 5 exons for quantitative association with hyperbilirubinemia.

Results

Eleven UGT1A1 variants were revealed in the case and control subjects, four of which were novel coding variants. A variant of PBREM (UGT1A1*60) was found in 47.6% of the patients, a TA repeat motif in the 5-primer promoter region [A(TA)7TAA,UGT1A1*28] was found in 27.9% of the patients, and p.G71R (UGT1A1*6) was in 33.2% of the patients. For the healthy controls, the frequency of UGT1A1*60, UGT1A1*28 and UGT1A1*6 was 26.7%, 9.0% and 15.7%, respectively. Homozygous UGT1A1*28 and homozygous UGT1A1*6 were significantly associated with the risk of adult hyperbilirubinemia, with an odds ratio (OR) of 17.79 (95% CIs, 2.11–133.61) and 14.93 (95% CIs, 1.83–121.88), respectively. Quantitative analysis showed that sense mutation (including UGT1A1*6) and UGT1A1*28/*28, but not UGT1A1*60/*60 or UGT1A1*1/*28, was associated with increased serum total bilirubin (TB) levels. High linkage disequilibrium occurred between UGT1A1*60 and UGT1A1*28 (D′ = 0.964, r2 = 0.345).

Conclusions

This study identified four novel UGT1A1 coding variants, some of which were associated with increased serum TB levels. A quantitative approach to evaluate adult hyperbilirubinemia provides a more vigorous framework for better understanding of adult hyperbilirubinemia genetics.  相似文献   
62.
Mammary gland-distributed and ER-bound UDP-glucuronosyltransferase (UGT)-2B7 metabolizes genotoxic catechol-estrogens (CE) associated with breast cancer initiation. Although UGT2B7 has 3 PKC- and 2 tyrosine kinase (TK)-sites, its inhibition by genistein, herbimycin-A and PP2 with parallel losses in phospho-tyrosine and phospho-Y438-2B7 content indicated it requires tyrosine phosphorylation, unlike required PKC phosphorylation of UGT1A isozymes. 2B7 mutants at PKC-sites had essentially normal activity, while its TK-sites mutants, Y236F- and Y438F-2B7, were essentially inactive. Overexpression of regular or active Src, but not dominant-negative Src, in 2B7-transfected COS-1 cells increased 2B7 activity and phospho-Y438-2B7 by 50%. Co-localization of 2B7 and regular SrcTK in COS-1 cells that was dissociated by pretreatment with Src-specific PP2-inhibitor provided strong evidence Src supports 2B7 activity. Consistent with these findings, evidence indicates an appropriate set of ER proteins with Src-homology binding-domains, including 2B7 and well-known multi-functional Src-engaged AKAP12 scaffold, supports Src-dependent phosphorylation of CE-metabolizing 2B7 enabling it to function as a tumor suppressor.  相似文献   
63.
Biliary excretion is the main route of disposal of bilirubin and impaired excretion results in jaundice, a well recognisable symptom of liver disease. Conjugation of bilirubin in the liver is essential for its clearance. The glucuronidation of bilirubin is catalysed by the microsomal UDP-glucuronosyltransferase UGT1A1. Patients with Crigler-Najjar syndrome type 1 and Gunn rats, mutant strain of the Wistar rats, bear an autosomal recessive disorder resulting in hyperbilirubinemia. The aim of this work is to add new data about activity of UGT1A1 during the perinatal period and adult life. The results showed that activity of UGT1A1 is detectable from day 22 of the gestation. After birth, activity of UGT1A1 gradually increases and reaches the levels of adult life. Furthermore, bilirubin azopigments have been separated and characterized by thin layer chromatography. We have found that concentration of samples by evaporation and ulterior storing at -20 degrees C seemed to be suitable for the maintenance of samples.  相似文献   
64.
65.
Sun C  Southard C  Olopade OI  Di Rienzo A 《Gene》2011,481(1):24-28
Differential allelic expression (DAE) is a powerful tool to identify cis-regulatory elements for gene expression. The UDP-glucuronosyltransferase 2 family, polypeptide B15 (UGT2B15), is an important enzyme involved in the metabolism of multiple endobiotics and xenobiotics. In the present study, we measured the relative expression of two alleles at SNP c.1568C>A (rs4148269) in this gene, which causes an amino acid substitution (T523K). An excess of the C over the A allele was consistently observed in both liver (P = 0.0021) and breast (P = 0.012) samples, suggesting that SNP(s) in strong linkage disequilibrium (LD) with c.1568C>A can regulate UGT2B15 expression in both tissues. By resequencing, one such SNP, c.1761T>C (rs3100) in 3′ untranslated region (UTR), was identified. Reporter gene assays showed that the 1761T allele results in a significantly higher gene expression level than the 1761C allele in HepG2, MCF-7, LNCaP, and Caco-2 cell lines (all P < 0.001), thus indicating that this variation can regulate UGT2B15 gene expression in liver, breast, colon, and prostate tissues. Considering its location, we postulated that this SNP is within an unknown microRNA binding site and can influence microRNA targeting. Considering the importance of UGT2B15 in metabolism, we proposed that this SNP might contribute to multiple cancer risk and variability in drug response.  相似文献   
66.
67.
The cotton bollworm Helicoverpa armigera and the tobacco budworm Heliothis virescens are closely related generalist insect herbivores and serious pest species on a number of economically important crop plants including cotton. Even though cotton is well defended by its major defensive compound gossypol, a toxic sesquiterpene dimer, larvae of both species are capable of developing on cotton plants. In spite of severe damage larvae cause on cotton plants, little is known about gossypol detoxification mechanisms in cotton-feeding insects. Here, we detected three monoglycosylated and up to five diglycosylated gossypol isomers in the feces of H. armigera and H. virescens larvae fed on gossypol-supplemented diet. Candidate UDP-glycosyltransferase (UGT) genes of H. armigera were selected by microarray studies and in silico analyses and were functionally expressed in insect cells. In enzymatic assays, we show that UGT41B3 and UGT40D1 are capable of glycosylating gossypol mainly to the diglycosylated gossypol isomer 5 that is characteristic for H. armigera and is absent in H. virescens feces. In conclusion, our results demonstrate that gossypol is partially metabolized by UGTs via glycosylation, which might be a crucial step in gossypol detoxification in generalist herbivores utilizing cotton as host plant.  相似文献   
68.
Because human prostate-distributed UDP-glucuronosyltransferase (UGT) 2B15 metabolizes 5α-dihydrotestosterone (DHT) and 3α-androstane-5α,17β-diol metabolite, we sought to determine whether 2B15 requires regulated phosphorylation similar to UGTs already analyzed. Reversible down-regulation of 2B15-transfected COS-1 cells following curcumin treatment and irreversible inhibition by calphostin C, bisindolylmaleimide, or röttlerin treatment versus activation by phorbol 12-myristate 13-acetate indicated that 2B15 undergoes PKC phosphorylation. Mutation of three predicted PKC and two tyrosine kinase sites in 2B15 caused 70–100 and 80–90% inactivation, respectively. Anti-UGT-1168 antibody trapped 2B15-His-containing co-immunoprecipitates of PKCα in 130–140- and >150-kDa complexes by gradient SDS-PAGE analysis. Complexes bound to WT 2B15-His remained intact during electrophoresis, whereas 2B15-His mutants at phosphorylation sites differentially dissociated. PKCα siRNA treatment inactivated >50% of COS-1 cell-expressed 2B15. In contrast, treatment of 2B15-transfected COS-1 cells with the Src-specific activator 1,25-dihydroxyvitamin D3 enhanced activity; treatment with the Src-specific PP2 inhibitor or Src siRNA inhibited >50% of the activity. Solubilized 2B15-His-transfected Src-free fibroblasts subjected to in vitro [γ-33P]ATP-dependent phosphorylation by PKCα and/or Src, affinity purification, and SDS gel analysis revealed 2-fold more radiolabeling of 55–58-kDa 2B15-His by PKCα than by Src; labeling was additive for combined kinases. Collectively, the evidence indicates that 2B15 requires regulated phosphorylation by both PKCα and Src, which is consistent with the complexity of synthesis and metabolism of its major substrate, DHT. Whether basal cells import or synthesize testosterone for transport to luminal cells for reduction to DHT by 5α-steroid reductase 2, comparatively low-activity luminal cell 2B15 undergoes a complex pattern of regulated phosphorylation necessary to maintain homeostatic DHT levels to support occupation of the androgen receptor for prostate-specific functions.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号