首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1453篇
  免费   126篇
  国内免费   124篇
  1703篇
  2024年   4篇
  2023年   31篇
  2022年   31篇
  2021年   69篇
  2020年   76篇
  2019年   68篇
  2018年   68篇
  2017年   50篇
  2016年   52篇
  2015年   55篇
  2014年   77篇
  2013年   109篇
  2012年   41篇
  2011年   60篇
  2010年   45篇
  2009年   58篇
  2008年   74篇
  2007年   64篇
  2006年   65篇
  2005年   65篇
  2004年   43篇
  2003年   59篇
  2002年   50篇
  2001年   33篇
  2000年   34篇
  1999年   24篇
  1998年   26篇
  1997年   28篇
  1996年   32篇
  1995年   26篇
  1994年   39篇
  1993年   20篇
  1992年   25篇
  1991年   20篇
  1990年   11篇
  1989年   12篇
  1988年   9篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1972年   10篇
  1971年   4篇
排序方式: 共有1703条查询结果,搜索用时 15 毫秒
131.
本研究使用固定翼无人机拍摄4 200 ha林地,从中选取了广东省河源市和平县阳明镇、紫金县紫城镇、东源县义合镇共3个样地的3 500 ha林地的航拍影像进行分析,用以探究松材线虫Bursaphelenchus xylophilus病死树的空间分布情况,及不同立地因子对疫情的影响,为松材线虫病监测预报提供解决途径。通过Pix4Dmapper软件对航拍的图像进行拼接生成正射影像图(DOM)等成果,然后使用eCognition(易康)软件对影像成果进行分割、分类和信息提取,最后借助ArcGIS平台进行病死树数量统计并获取方位、坡向、坡度、海拔等立地因子信息。结果表明,松材线虫病死树分布均呈聚集分布。使用双对角线法、平行线法、“Z”字法、五点法等不同抽样方法调查发现,仅五点法所得平均数与总体平均数无明显差异(P<0.05)。松材线虫病死树在不同立地因子下均有差异:主要分布在西坡、南坡和东南坡,西坡最多为25.94%,其次是南坡23.57%;主要分布在半阳坡和阳坡,半阳坡占36.54%,阳坡占34.09%;主要分布在凸坡,但随着疫情的发展,凹坡病死树数量逐渐超过凸坡;主要分布海拔区间在30...  相似文献   
132.
LoinMAX (LM) is a quantitative trait locus (QTL), which was found to be segregated in Australian Poll Dorset sheep, and maps to the distal end of sheep chromosome 18. LM-QTL was reported to increase Musculus longissimus dorsi area and weight by 11% and 8%, respectively. The aim of this study was to comprehensively evaluate the direct effects of LM-QTL in a genetic background typical of the stratified structure of the UK sheep industry, before it can be recommended for use in the United Kingdom. Crossbred lambs, either non-carriers or carrying a single copy of LM-QTL, were produced out of Scottish Mule ewes (Bluefaced Leicester × Scottish Blackface) artificially inseminated with semen from two Poll Dorset rams that were heterozygous for LM-QTL. Unexpectedly, one of these rams was also heterozygous for a QTL that affects the overall carcass muscling (MyoMAX™). This was accounted for by nesting MyoMAX™ status (carrier or non-carrier) within sire in the statistical analysis. Lambs were weighed and scanned by using X-ray computed tomography (CT) at an average age of 113 days. Ultrasound scan measurements, along with lamb weights, were taken at an average age of 140 days and lambs were then slaughtered. Carcasses were weighed and classified for fat cover and conformation scores, based on the Meat and Livestock Commission (MLC) carcass classification scheme, and then scanned by using a video image analysis (VIA) system. M. longissimus lumborum (MLL) width, as measured by CT scanning, was greater (P < 0.05) in lambs heterozygous for LM-QTL compared with non-carriers. MLL in LM-QTL carrier lambs was also significantly deeper, as measured by both ultrasound muscle depth at the third lumbar vertebrae (+3.7%; P < 0.05) and CT scanning at the fifth lumbar vertebrae (+3.4%; P < 0.01). Consequently, MLL area, was measured by using CT scanning, was significantly higher (+4.5%; P < 0.01) in lambs carrying a single copy of LM-QTL compared with non-carriers. Additional traits measured by CT, such as leg muscle dimensions, average muscle density and tissue proportions, were not significantly affected by LM-QTL. LM-QTL did not significantly affect total carcass lean or fat weights or MLC conformation and fat score classifications. Using previously derived algorithms, VIA could detect a significant effect of the LM-QTL on the predicted weight of saleable meat yield in the loin primal cut (+2.2%; P < 0.05), but not in the other primal cuts, or the total carcass.  相似文献   
133.
Hamelryck T 《Proteins》2003,51(1):96-108
Convergent evolution often produces similar functional sites in nonhomologous proteins. The identification of these sites can make it possible to infer function from structure, to pinpoint the location of a functional site, to identify enzymes with similar enzymatic mechanisms, or to discover putative functional sites. In this article, a novel method is presented that (a) queries a database of protein structures for the occurrence of a given side chain pattern and (b) identifies interesting side-chain patterns in a given structure. For efficiency and to make a robust statistical evaluation of the significance of a similarity possible, patterns of three residues (or triads) are considered. Each triad is encoded as a high-dimensional vector and stored in an SR (Sphere/Rectangle) tree, an efficient multidimensional index tree. Identifying similar triads can then be reformulated as identifying neighboring vectors. The method deals with many features that otherwise complicate the identification of meaningful patterns: shifted backbone positions, conservative substitutions, various atom label ambiguities and mirror imaged geometries. The combined treatment of these features leads to the identification of previously unidentified patterns. In particular, the identification of mirror imaged side-chain patterns is unique to the here-described method. Interesting triads in a given structure can be identified by extracting all triads and comparing them with a database of triads involved in ligand binding. The approach was tested by an all-against-all comparison of unique representatives of all SCOP superfamilies. New findings include mirror imaged metal binding and active sites, and a putative active site in bacterial luciferase.  相似文献   
134.
135.
Increased phenotyping accuracy and throughput are necessary to improve our understanding of quantitative variation and to be able to deconstruct complex traits such as those involved in growth responses to the environment. Still, only a few facilities are known to handle individual plants of small stature for non‐destructive, real‐time phenotype acquisition from plants grown in precisely adjusted and variable experimental conditions. Here, we describe Phenoscope, a high‐throughput phenotyping platform that has the unique feature of continuously rotating 735 individual pots over a table. It automatically adjusts watering and is equipped with a zenithal imaging system to monitor rosette size and expansion rate during the vegetative stage, with automatic image analysis allowing manual correction. When applied to Arabidopsis thaliana, we show that rotating the pots strongly reduced micro‐environmental disparity: heterogeneity in evaporation was cut by a factor of 2.5 and the number of replicates needed to detect a specific mild genotypic effect was reduced by a factor of 3. In addition, by controlling a large proportion of the micro‐environmental variance, other tangible sources of variance become noticeable. Overall, Phenoscope makes it possible to perform large‐scale experiments that would not be possible or reproducible by hand. When applied to a typical quantitative trait loci (QTL) mapping experiment, we show that mapping power is more limited by genetic complexity than phenotyping accuracy. This will help to draw a more general picture as to how genetic diversity shapes phenotypic variation.  相似文献   
136.
Optoacoustic (photoacoustic) imaging is often performed with one‐dimensional transducer arrays, in analogy to ultrasound imaging. Optoacoustic imaging using linear arrays offers ease of implementation but comes with several performance drawbacks, in particular poor elevation resolution, i.e. the resolution along the axis perpendicular to the focal plane. Herein, we introduce and investigate a bi‐directional scanning approach using linear arrays that can improve the imaging performance to quasi‐isotropic transverse resolution. We study the approach theoretically and perform numerical simulations and phantom measurements to evaluate its performance under defined conditions. Finally, we discuss the features and the limitations of the proposed method.

The poor elevation resolution in a linear scan (left image) is overcome by the proposed bi‐directional scanning approach that yields isotropic transverse resolution (right).  相似文献   

137.
This study was conducted to determine if correlations exist between the numbers of microscopic follicles comprising ovarian follicular reserve (OFR) and antral follicle counts (AFCs), and to assess the usefulness of computerized analyses of ovarian ultrasonograms and magnetic resonance (MR) images for estimating OFR in excised porcine, ovine and bovine ovaries. As a pre-requisite to these analyses, we characterized and compared ovarian cortical histomorhpology and follicle populations in the three species varying in prolificacy and overall reproductive longevity, and hence the total number of microscopic and antral follicles. Ultrasonographic and MR images were obtained at the scanner settings optimized to provide opposing contrasts between antral follicles and the ovarian stroma. Commercially available ImageProPlus® analytical software was used to calculate numerical pixel values (NPVs) and pixel heterogeneity (standard deviation of the pixel values) along the computer-generated lines (4–6) placed in the area corresponding to the ovarian cortex. The numbers of primordial (r = 0.38, P < 0.01) and intermediate follicles (r = 0.37, P < 0.01) were correlated with the numbers of antral follicles in bovine ovarian sections. The numbers of primordial (r = 0.28, P < 0.05), intermediate (r = 0.31, P < 0.01) and primary follicles (r = 0.27, P < 0.05) correlated directly with mean NPVs of the ultrasonographic ovarian images in cattle. There was a negative correlation between primary follicle numbers and NPVs of MR images (3D FAST-SPOILED GRADIENT ECHO) of the porcine ovarian cortex (r = −0.31, P < 0.05). To summarize, the numbers of primordial and intermediate follicles could only be estimated from AFCs in cows. Using ultrasound NPVs, the numbers of primordial, intermediate and primary follicles could be directly estimated in bovine ovaries and the quantitative image attributes of MR images were useful for quantifying porcine primary follicles. The bovine ovarian model is compatible with human situation and hence future studies should be undertaken to ascertain the usefulness of AFCs and ultrasonographic image analyses for estimating OFR in women.  相似文献   
138.
Microglia, which are CNS-resident neuroimmune cells, transform their morphology and size in response to CNS damage, switching to an activated state with distinct functions and gene expression profiles. The roles of microglial activation in health, injury and disease remain incompletely understood due to their dynamic and complex regulation in response to changes in their microenvironment. Thus, it is critical to non-invasively monitor and analyze changes in microglial activation over time in the intact organism. In vivo studies of microglial activation have been delayed by technical limitations to tracking microglial behavior without altering the CNS environment. This has been particularly challenging during chronic neurodegeneration, where long-term changes must be tracked. The retina, a CNS organ amenable to non-invasive live imaging, offers a powerful system to visualize and characterize the dynamics of microglia activation during chronic disorders.This protocol outlines methods for long-term, in vivo imaging of retinal microglia, using confocal ophthalmoscopy (cSLO) and CX3CR1GFP/+ reporter mice, to visualize microglia with cellular resolution. Also, we describe methods to quantify monthly changes in cell activation and density in large cell subsets (200-300 cells per retina). We confirm the use of somal area as a useful metric for live tracking of microglial activation in the retina by applying automated threshold-based morphometric analysis of in vivo images. We use these live image acquisition and analyses strategies to monitor the dynamic changes in microglial activation and microgliosis during early stages of retinal neurodegeneration in a mouse model of chronic glaucoma. This approach should be useful to investigate the contributions of microglia to neuronal and axonal decline in chronic CNS disorders that affect the retina and optic nerve.  相似文献   
139.
Three-dimensional (3D) tumor spheroids are utilized in cancer research as a more accurate model of the in vivo tumor microenvironment, compared to traditional two-dimensional (2D) cell culture. The spheroid model is able to mimic the effects of cell-cell interaction, hypoxia and nutrient deprivation, and drug penetration. One characteristic of this model is the development of a necrotic core, surrounded by a ring of G1 arrested cells, with proliferating cells on the outer layers of the spheroid. Of interest in the cancer field is how different regions of the spheroid respond to drug therapies as well as genetic or environmental manipulation. We describe here the use of the fluorescence ubiquitination cell cycle indicator (FUCCI) system along with cytometry and image analysis using commercial software to characterize the cell cycle status of cells with respect to their position inside melanoma spheroids. These methods may be used to track changes in cell cycle status, gene/protein expression or cell viability in different sub-regions of tumor spheroids over time and under different conditions.  相似文献   
140.
H. Ohsaki, E. Hirakawa, K. Kagawa, M. Nakamura, H. Kiyomoto and R. Haba Value of computer‐assisted quantitative nuclear morphometry for differentiation of reactive renal tubular cells from low‐grade urothelial carcinoma Objective: To assess whether computer‐assisted quantitative morphological parameters can be an effective tool for objectively distinguishing reactive renal tubular cells from low‐grade urothelial carcinoma cells (LG‐UCs) in voided urine. Methods: Nuclear morphometry was performed by a computer‐assisted image analyser system on Papanicolaou‐stained cytological specimens. The circumference of reactive renal tubular cells (n = 40) or LG‐UC (n = 20) nuclei were manually traced, and the following nuclear morphometric parameters were analysed: (i) area, (ii) perimeter, (iii) roundness factor, (iv) maximum length, and (v) linear factor. For each nuclear measurement, we calculated the maximum, minimum, mean and standard deviation. Results: The mean nuclear area and nuclear perimeter were higher in reactive renal tubular cells compared to the LG‐UCs. The mean of roundness and linear factors (reflecting a tendency for the nuclear outline to be regular and oval, respectively) were higher in LG‐UCs compared with reactive renal tubular cells. Among nuclear areas, the nuclear perimeter, roundness factors and maximum length did not show any significant differences between reactive renal tubular cells and LG‐UCs. On the other hand, the linear factor showed a mean higher value among LG‐UCs than reactive renal tubular cells (P = 0.023). Conclusions: Of five quantitative nuclear morphological parameters, only linear factor was statistically significant in differentiating reactive renal tubular cells in renal disease from LG‐UCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号