首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   7篇
  国内免费   4篇
  117篇
  2024年   1篇
  2022年   5篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   9篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   12篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
排序方式: 共有117条查询结果,搜索用时 15 毫秒
31.
Pteris multifida (PM) and Cortex phellodendri (CP) are medicinal foods used for gastrointestinal protection. Lactic-acid bacteria are probiotics. Salmonella Typhimurium strain ST21-infected mice were used to examine the alleviative effects of two lactic-acid bacteria (LAB) as well as aqueous extracts of PM and CP for a 4-day treatment. CP and LAB decreased fecal ST counts. CP and PM reduced the ST21 count in the blood, intestine, and liver. LAB lowered the ST21 count in the intestine and spleen. CP and LAB decreased the IFN-gamma level; PM lowered the TNF-alpha level; and both LAB and PM reduced the IL-1beta level in serum. PM and CP lowered the IgG level in serum. The data in a macrophage infection model indicate that TNF-alpha was partial involved in this alleviative effects, other mechanisms might be involved. In sum, these novel findings suggest that PM, CP, and LAB probiotics are potential anti-Salmonellae agents.  相似文献   
32.
Although Enterococcus faecium is used as a probiotic feed supplement in animal production, feeding of the bacterium to piglets resulted in a more severe infection with Salmonella Typhimurium DT104 during a challenge experiment. To enlighten the mode of action by which E. faecium affected the piglets’ health, we investigated the influence of the probiotic bacterium on the development of intestinal and circulating immune cells during a challenge experiment with S.Typhimurium DT104. To minimise varying impacts of the maternal immunity on the course of infection, only piglets were implemented that descended from Salmonella-free sows. In addition, the potency of purified blood and intraepithelial immune cells to control the growth of Salmonella was tested in vitro. In animals treated with E. faecium, a reduction of intraepithelial CD8αβ T cells, reduced circulating CD8αβ T cells and a less efficient control of intracellular Salmonella growth, mediated by peripheral blood mononuclear cells, were observed.  相似文献   
33.
【背景】沙门氏菌是一种革兰阴性肠道病原菌,主要依靠III型分泌系统(typeIIIsecretion systems,T3SSs)来产生与致病性相关的效应蛋白。其中沙门氏菌致病岛(Salmonellapathogenicity island,SPI)区域是关键的基因区域。高盐浓度条件可以诱导SPI-1上效应蛋白的表达。【目的】探究在高盐浓度条件下鼠伤寒沙门氏菌(SalmonellaentericaserovarTyphimurium)糖蛋白的差异表达情况,寻找有意义的效应糖蛋白。【方法】将鼠伤寒沙门氏菌在普通培养基和高盐培养基中培养,收集菌体并超声裂解,提取蛋白后,用肼偶联法富集糖蛋白并用胰酶酶解,通过二甲基标记定量及LC/MS定量蛋白质组学方法进行糖蛋白的定量,用Thermo Proteome Discoverer 2.2软件对标记蛋白进行定性及定量分析。【结果】质谱结果显示,高盐环境中,沙门氏菌有19个糖蛋白的表达发生显著改变,其中,上调蛋白10个,最为显著的是ompC基因编码的外膜孔蛋白;下调表达糖蛋白9个,最为显著的是yjgF基因编码的翻译起始抑制因子。【结论】根据定量蛋白质组...  相似文献   
34.
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.  相似文献   
35.
Intraphagocytic survival of Salmonella Typhimurium (ST) depends (at least in part) upon its ability to repair oxidant-damaged macromolecules. Met residues either free or in protein bound form are highly susceptible to phagocyte-generated oxidants. Oxidation of Mets leads to Met-SO formation, consequently loss of protein functions that results in cell death. Methionine sulfoxide reductase (Msr) reductively repairs Met-SO to Met in the presence of thioredoxin (trx) and thioredoxin reductase (trxR). Earlier we reported that methionine sulfoxide reductase A (msrA) gene deletion strain of ST suffered oxidative stress.[1 Trivedi, R.N.; Agarwal, P.; Kumawat, M.; Pesingi, P.K.; Gupta, V.K.; Goswami, T.K.; Mahawar, M. Methionine Sulfoxide Reductase A (MsrA) Contributes to Salmonella Typhimurium Survival Against Oxidative Attack of Neutrophils. Immunobiology 2015, 220(12), 13221327.[Crossref], [PubMed], [Web of Science ®] [Google Scholar]] Thioredoxin system of ST comprises of two thioredoxins (trxA and trxC) and one thioredoxin reductase (trxB). Preferred trx utilized in MsrA-mediated repair of Met-SO is not known. In current study, we cloned, expressed, and purified ST TrxA, TrxB, TrxC, and MsrA in recombinant forms. The migration of TrxA, TrxB, TrxC, and MsrA proteins was approximately 10, 36, 16, and 26?kDa on SDS-gels. The nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-linked reductase assays interpreted that MsrA utilized two times more NADPH for the reduction of S-methyl p-tolyl sulfoxide when TrxA was included in the assays as compared to TrxC.  相似文献   
36.
37.
38.
39.
40.
Catecholamines may stimulate enteric bacteria including the foodborne pathogen Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) by two mechanisms in vivo: as a quorum sensing signal and a supplier of iron. To identify genes of Salmonella Typhimurium that respond to norepinephrine, transposon mutagenesis and DNA microarray analysis were performed. Insertional mutations in the following genes decreased norepinephrine-enhanced growth: degS, entE, entF, fes, gpmA, hfq, STM3846. DNA microarray and real-time RT-PCR analyses revealed a decrease in the expression of several genes involved in iron acquisition and utilization during norepinephrine exposure, signifying the iron-limiting conditions of serum-SAPI minimal medium and the siderophore-like activity of norepinephrine. Unlike the wild-type parent strain, growth of neither a fepA iroN cirA mutant nor a fepC mutant, harboring deletional mutations in the outer and inner membrane transporters of enterochelin, respectively, was enhanced by norepinephrine. However, growth of the fepC and the fepA iroN cirA mutants could be rescued by an alternative siderophore, ferrioxamine E, further validating the role of norepinephrine in supplying the organism with iron via the catecholate-specific iron transport system. Contrary to previous reports using small animal models, the fepA iroN cirA mutant of Salmonella Typhimurium colonized the swine gastrointestinal tract, as did the fepC mutant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号