首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   25篇
  国内免费   38篇
  2023年   3篇
  2022年   10篇
  2021年   9篇
  2020年   11篇
  2019年   11篇
  2018年   10篇
  2017年   9篇
  2016年   12篇
  2015年   11篇
  2014年   16篇
  2013年   34篇
  2012年   11篇
  2011年   22篇
  2010年   12篇
  2009年   12篇
  2008年   14篇
  2007年   21篇
  2006年   14篇
  2005年   20篇
  2004年   12篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   9篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1996年   7篇
  1995年   14篇
  1994年   14篇
  1993年   8篇
  1992年   14篇
  1991年   7篇
  1990年   12篇
  1989年   12篇
  1988年   18篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
51.
Use of resistant cultivars is a desirable approach to manage the peanut root-knot nematode (Meloidogyne arenaria). To incorporate resistance into commercially acceptable cultivars requires reliable, efficient screening methods. To optimize the resistance screening protocol, a series of greenhouse tests were done using seven genotypes with three levels of resistance to M. arenaria. The three resistance levels could be separated based on gall indices as early as two weeks after inoculation (WAI) using 8,000 eggs of M. arenaria per plant, while four or more weeks were needed when 1,000–6,000 eggs/plant were used. High inoculum densities (over 8,000 eggs/plant) were needed to separate the three resistance levels based on eggs per gram of root within eight WAI. A gall index based on percentage of galled roots could separate the three resistance levels at lower inoculum levels and earlier harvest dates than other assessment methods. The use of eggs vs. second-stage juveniles (J2) as inoculum provided similar results; however, it took three to five more days to collect J2 than to collect eggs from roots. Plant age affected gall index and nematode reproduction on peanut, especially on the susceptible genotypes AT201 and D098. The genotypes were separated into their correct resistance classes when inoculated 10 to 30 days after planting, but were not separated correctly when inoculated on day 40.  相似文献   
52.
AIMS: To determine the impact of medium composition, bacterial strain, trehalose accumulation, and relative humidity during seed storage on the survival of Bradyrhizobium japonicum on soya bean [Glycine max (L.) Merr.] seeds. METHODS AND RESULTS: Bacteria in liquid cultures were applied to seeds, and the number of survivors was quantified after 2, 24, 48, or 96 h. Addition of yeast extract to a defined medium increased on-seed survival 50- to 80-fold. Addition of 40 mmol l(-1) of NaCl to the medium doubled or tripled the accumulation of trehalose in cells and increased survival several fold, and the addition of both salt and trehalose had an additive effect. There was a threefold difference among strains in survival, and survival of the various strains was significantly correlated with differences in the accumulation of trehalose. The correlation between trehalose accumulation by bacteria and survival was also highly significant in other experiments. Studies in controlled humidity environments showed 100-fold or more differences in survival. CONCLUSIONS: The consistently significant correlation of trehalose content of cells with survival on seed suggests that trehalose is an important component of the survival mechanisms. When some of the factors (salt and trehalose in the medium plus humidity control) were studied in combination, several 100-fold increases in survival of bacteria on seeds were recorded. SIGNIFICANCE AND IMPACT OF THE STUDY: It is possible by manipulation of several parameters--strain selection, salt and trehalose content of the medium, control of relative humidity--to achieve substantial improvements in survival of Bradyrhizobium on soya bean seeds.  相似文献   
53.
【目的】构建用于比较黄曲霉(Aspergillus flavus,A. flavus)菌株之间致病力差异的小鼠感染模型,并利用该模型评价真菌病毒AfPV1对宿主A. flavus致病力的影响。【方法】用不同浓度环磷酰胺腹腔注射Institute of Cancer Research (ICR)小鼠,根据白细胞的数量判断小鼠免疫抑制程度;通过滴鼻和尾静脉两种感染方法接种不同浓度的A. flavus孢子量,统计14 d以内小鼠的死亡率,确定A. flavus最佳的孢子接种量;通过小鼠组织的菌落负荷量以及肺部组织的病理观察,确定A. flavus感染是否成功;最后利用该小鼠模型评价真菌病毒AfPV1对寄主A. flavus致病力的影响。【结果】腹腔注射环磷酰胺的浓度为250 mg/kg时,能够达到免疫抑制水平;小鼠组织真菌负荷和病理组织切片观察显示A. flavus成功感染接种的ICR小鼠组织;在滴鼻接种模型中,A. flavus的孢子接种量为40μL(1×106CFU/mL)时比较合适评价A. flavus菌株之间的差异;在尾静脉接种的模型中,A. flavus的孢子...  相似文献   
54.
Employing known susceptible and resistant genotypes and pure bacterial inoculum (0.1 OD; 108 CFU/ml?1), five different inoculation methods were tried to assess the response of tomato genotypes to Ralstonia solanacearum. This included seed‐soaking inoculation, seed‐sowing followed by inoculum drenching, or at 2‐week stage through petiole‐excision inoculation, soaking of planting medium with inoculum either directly or after imparting seedling root‐injury. Seed‐based inoculations or mere inoculum drenching at 2 weeks did not induce much disease in seedlings. Petiole inoculation induced 90–100% mortality in susceptible checks but also 50–60% mortality in normally resistant genotypes within 7–10 days. Root‐injury inoculation at 2‐week seedling stage appeared the best for early and clearer distinction between resistant and susceptible lines. The observations suggest a role played by the root system in governing genotypic resistance to the pathogen. Direct shoot inoculation is to be adopted only for selecting highly resistant lines or to thin down segregating populations during resistance breeding.  相似文献   
55.
56.
The risk of acquiring malaria transmitted by Anopheles baimaii Sallum & Peyton, 2005, formerly known as An. dirus species D (Sallum et al., 2005) (Diptera: Culicidae), at different hours of the night in a forest-fringed village of Assam, North-east India was assessed through all-night mosquito landing catches during 1995-2000. An estimated overall mean biting rate of 36.1 bites/person/night (95% CI = 26.2-45.8), a sporozoite rate of 1.9% (95% CI = 1.1-2.9%) and a parous rate of 58.7% (95% CI = 55.3-62.0%) were recorded. Parous and sporozoite-positive females tended to be caught mainly before midnight. The effective entomological inoculation rate was the highest (0.249 positive bites/person/night) from 21.00 to 24.00 hours, suggesting that the second quartile of the night is the most risky period for malaria transmission by An. baimaii. Considering that approximately 21% of mean inoculations take place before 21.00 hours, it appears that there is a need for appropriate protective measures during the pre-bed time period to supplement the impact of insecticide-treated nets against An. baimaii in north-east India.  相似文献   
57.
* Root respiration, stomatal conductance, leaf transpiration and photosynthetic rates were measured in phytotron and field-grown plants following the application of 5 or 10 nM lumichrome, 10 nM ABA (abscisic acid) and 10 ml of 0.2 OD600 infective rhizobial cells. * Providing soybean and cowpea roots with their respective homologous rhizobia and/or purified lumichrome increased the concentration of this molecule in xylem sap and leaf extracts. Relative to control, rhizobial inoculation and lumichrome application significantly increased root respiration in maize, decreased it in lupin, but had no effect on the other test species. * Applying either lumichrome (10 nM), infective rhizobial cells or ABA to roots of plants for 44 h in growth chambers altered leaf stomatal conductance and transpiration in cowpea, lupin, soybean, Bambara groundnut and maize, but not in pea or sorghum. Where stomatal conductance was increased by lumichrome application or rhizobial inoculation, it resulted in increased leaf transpiration relative to control plants. Treating roots of field plants of cowpea with this metabolite up to 63 d after planting showed decreased stomatal conductance, which affected CO2 intake and reduction by Rubisco. * The effect of rhizobial inoculation closely mirrored that of lumichrome application to roots, indicating that rhizobial effects on these physiological activities were most likely due to lumichrome released into the rhizosphere.  相似文献   
58.
59.
Two experiments were conducted to investigate the effect of inoculating Vicia faba plants (broad beens) raised in clean and oily sand with nodule-forming rhizobia and plant-growth-promoting rhizobacteria (PGPR) on growth of these plants in sand and to test whether this can improve the phytoremediation potential of this crop for oily desert areas. It was found that crude oil in sand at concentrations < 1.0% (w/w) enhanced the plant heights, their fresh and dry weights, the total nodule weights per plant, and the nitrogen contents of shoots and fruits. Similar enhancing effects were recorded when roots of the young plants were inoculated with nodule bacteria alone, PGPR alone, or a mixture of one strain of nodule bacteria and one of the PGPR. Such plant growth effects were associated with a better phytoremediation potential of V. faba plants for oily sand. The total numbers of oil-utilizing bacteria increased in the rhizosphere and more hydrocarbons were eliminated in sand close to the roots. The nodule bacteria tested were two strains of Rhizobium leguminosarum and the PGPR were Pseudomonas aeruginosa and Serratia liquefaciens. The four strains were found to use crude oil, n-octadecane, and phenanthrene as sole sources of carbon and energy. It was concluded that coinoculation of V. faba plant roots in oily sand with nodule bacteria and PGPR enhances the phytoremediation potential of this plant for oily desert sand through improving plant growth and nitrogen fixation.  相似文献   
60.
A two-stage biotrickling filter was developed for removing dimethyl sulfide (DMS) and hydrogen sulfide (H2S). The first biotrickling filter (ABF) was inoculated with Acidithiobacillus thiooxidans and operated without pH control, while the second biotrickling filter (HBF) was inoculated with Hyphomicrobium VS and operated at neutral pH. High DMS elimination capacities were observed in the HBF (8.2 g DMS m(-3) h(-1) at 90% removal efficiency) after 2 days. Maximal observed elimination capacities were 83 g H2S m(-3) h(-1) (100% removal efficiency) and 58 g DMS m(-3) h(-1) (88% removal efficiency) for the ABF and the HBF, respectively. The influence of a decreasing empty bed residence time (120 down to 30 sec) and the robustness of the HBF towards changing operational parameters (low pH, starvation, and DMS and H2S peak loadings) were investigated. Suboptimal operational conditions rapidly resulted in lower DMS removal efficiencies, but recovery of the HBF was mostly obtained within a few days. The H2S removal efficiency in the ABF, however, was not influenced by varying operational conditions. In both reactors, microbial community dynamics of the biofilm and the suspended bacteria were investigated, using denaturing gradient gel electrophoresis (DGGE). After a period of gradual change, a stable microbial community was observed in the HBF after 60 days, although Hyphomicrobium VS was not the dominant microorganism. In contrast, the ABF biofilm community was stable from the first day and only a limited bacterial diversity was observed. The planktonic microbial community in the HBF was very different from that in the biofilm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号