首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7042篇
  免费   357篇
  国内免费   213篇
  2024年   10篇
  2023年   81篇
  2022年   149篇
  2021年   170篇
  2020年   141篇
  2019年   160篇
  2018年   136篇
  2017年   108篇
  2016年   119篇
  2015年   215篇
  2014年   466篇
  2013年   467篇
  2012年   415篇
  2011年   528篇
  2010年   352篇
  2009年   303篇
  2008年   363篇
  2007年   310篇
  2006年   324篇
  2005年   259篇
  2004年   274篇
  2003年   227篇
  2002年   183篇
  2001年   137篇
  2000年   133篇
  1999年   118篇
  1998年   145篇
  1997年   107篇
  1996年   125篇
  1995年   140篇
  1994年   137篇
  1993年   103篇
  1992年   77篇
  1991年   86篇
  1990年   79篇
  1989年   51篇
  1988年   46篇
  1987年   47篇
  1986年   27篇
  1985年   55篇
  1984年   60篇
  1983年   37篇
  1982年   50篇
  1981年   25篇
  1980年   21篇
  1979年   16篇
  1978年   7篇
  1977年   10篇
  1976年   6篇
  1975年   3篇
排序方式: 共有7612条查询结果,搜索用时 15 毫秒
961.
Human HepG2 cells were exposed to six TiO2 nanomaterials (with dry primary particle sizes ranging from 22 to 214 nm, either 0.3, 3, or 30 μg/mL) for 3 days. Some of these canonical pathways changed by nano‐TiO2 in vitro treatments have been already reported in the literature, such as NRF2‐mediated stress response, fatty acid metabolism, cell cycle and apoptosis, immune response, cholesterol biosynthesis, and glycolysis. But this genomic study also revealed some novel effects such as protein synthesis, protein ubiquitination, hepatic fibrosis, and cancer‐related signaling pathways. More importantly, this genomic analysis of nano‐TiO2 treated HepG2 cells linked some of the in vitro canonical pathways to in vivo adverse outcomes: NRF2‐mediated response pathways to oxidative stress, acute phase response to inflammation, cholesterol biosynthesis to steroid hormones alteration, fatty acid metabolism changes to lipid homeostasis alteration, G2/M cell checkpoint regulation to apoptosis, and hepatic fibrosis/stellate cell activation to liver fibrosis.  相似文献   
962.
963.
The zinc finger protein tristetraprolin (TTP) promotes translation repression and degradation of mRNAs containing AU-rich elements (AREs). Although much attention has been directed toward understanding the decay process and machinery involved, the translation repression role of TTP has remained poorly understood. Here we identify the cap-binding translation repression 4EHP-GYF2 complex as a cofactor of TTP. Immunoprecipitation and in vitro pull-down assays demonstrate that TTP associates with the 4EHP-GYF2 complex via direct interaction with GYF2, and mutational analyses show that this interaction occurs via conserved tetraproline motifs of TTP. Mutant TTP with diminished 4EHP-GYF2 binding is impaired in its ability to repress a luciferase reporter ARE-mRNA. 4EHP knockout mouse embryonic fibroblasts (MEFs) display increased induction and slower turnover of TTP-target mRNAs as compared to wild-type MEFs. Our work highlights the function of the conserved tetraproline motifs of TTP and identifies 4EHP-GYF2 as a cofactor in translational repression and mRNA decay by TTP.  相似文献   
964.
965.
Increasing evidence suggests mutations in human breast cancer cells that induce inappropriate expression of the 18-kDa cytokine pleiotrophin (PTN, Ptn) initiate progression of breast cancers to a more malignant phenotype. Pleiotrophin signals through inactivating its receptor, the receptor protein tyrosine phosphatase (RPTP)beta/zeta, leading to increased tyrosine phosphorylation of different substrate proteins of RPTPbeta/zeta, including beta-catenin, beta-adducin, Fyn, GIT1/Cat-1, and P190RhoGAP. PTN signaling thus has wide impact on different important cellular systems. Recently, PTN was found to activate anaplastic lymphoma kinase (ALK) through the PTN/RPTPbeta/zeta signaling pathway; this discovery potentially is very important, since constitutive ALK activity of nucleophosmin (NPM)-ALK fusion protein is causative of anaplastic large cell lymphomas, and, activated ALK is found in other malignant cancers. Recently ALK was identified in each of 63 human breast cancers from 22 subjects. We now demonstrate that RPTPbeta/zeta is expressed in each of these same 63 human breast cancers that previously were found to express ALK and in 10 additional samples of human breast cancer. RPTPbeta/zeta furthermore was localized not only in its normal association with the cell membrane but also scattered in cytoplasm and in nuclei in different breast cancer cells and, in the case of infiltrating ductal carcinomas, the distribution of RPTPbeta/zeta changes as the breast cancer become more malignant. The data suggest that the PTN/RPTPbeta/zeta signaling pathway may be constitutively activated and potentially function to constitutively activate ALK in human breast cancer.  相似文献   
966.
Geranylgeranylacetone (GGA), an isoprenoid compound, is an anti-ulcer drug developed in Japan. In our previous study, GGA was shown to inhibit ovarian cancer invasion by attenuating Rho activation [K. Hashimoto, K. Morishige, K. Sawada, M. Tahara, S. Shimizu, M. Sakata, K. Tasaka, Y. Murata, Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitro. Cancer 103 (2005) 1529-1536.]. In the present study, GGA treatment inhibited ovarian cancer progression in vitro and suppressed the tumor growth and ascites in the in vivo ovarian cancer model. In vitro analysis, treatment of cancer cells by GGA resulted in the inhibition of cancer cell proliferation, the inactivation of Ras, and the suppression of tyrosine phosphorylation of mitogen-activated protein kinase (MAPK). In conclusion, this is the first report that GGA inhibited ovarian cancer progression and the anti-tumor effect by GGA is, at least in part, derived not only from the suppression of Rho activation but also Ras-MAPK activation.  相似文献   
967.
We tested whether glucocorticoids modulated osteoblast expression of the annexin 1 system, including the ligand and two G-coupled receptors termed formyl-peptide receptor (FPR) and FPR-like-1 (FPRL-1). In Saos-2 cells, rapid up-regulation of FPR mRNA upon cell incubation with dexamethasone (0.01-1 microM) was observed, with significant changes as early as 2h and a more marked response at 24h; annexin 1 and FPRL-1 mRNA changes were more subtle. At the protein level, dexamethasone provoked a rapid externalization of annexin 1 (maximal at 2h) followed by delayed time-dependent changes in the cell cytosol. Saos-2 cell surface expression of FPR or FPRL-1 could not be detected, even when dexamethasone was added with the bone modelling cytokines interleukin-6 or interleukin-1. The uneven modulation of the annexin 1 system (mediator and its putative receptors) in osteoblasts might lead to a better understanding of how these complex biochemical pathways become operative in bone.  相似文献   
968.
The differentiation of colon cancer cell lines is associated with changes in calcium homeostasis. Concomitantly there are changes in the expression of some calcium transporters and G-protein-coupled receptors, which are capable of altering cytosolic-free calcium levels. Recent studies associate alterations in calcium transporter expression with tumourigenesis, such as changes in specific isoforms of the plasma membrane calcium ATPase (PMCA) in breast cancer cell lines. In this study, we examined the expression of PMCA isoforms in the HT-29 colon cancer cell line using two methods of differentiation (sodium butyrate-mediated and spontaneous post-confluency induced differentiation). Our studies show that differentiation of HT-29 colon cancer cells is associated with the up-regulation of the PMCA isoform PMCA4 but no significant alteration in PMCA1. These results suggest that PMCA4 may be important and have a specific role in colon cells as well as being significant in colon cancer tumourigenesis.  相似文献   
969.
970.
Sp1 and Sp3 regulate basal transcription of the survivin gene   总被引:1,自引:0,他引:1  
Survivin, a unique member of the inhibitor of apoptosis protein family, is overexpressed in many cancers and considered to play an important role in oncogenesis. In this study, we cloned and identified the proximal 269 bp promoter of survivin gene, which exhibited strong promoter activity in HeLa cells. The TATA-less, GC-rich promoter contains 7 putative binding sites for Sp1, two of which (one at position -148 to -153, the other at position -127 to -140) are essential in regulating basal survivin promoter activity. Not only Sp1 but also Sp3 can activate the survivin promoter, which were proven by EMSA, blocking Sp1 or Sp3 using RNAi or mithramycin treatment of HeLa cells, and overexpression of Sp1 or Sp3. Our results collectively suggest that Sp1 cooperates with Sp3 to regulate survivin promoter activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号