首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3305篇
  免费   244篇
  国内免费   50篇
  3599篇
  2024年   9篇
  2023年   29篇
  2022年   81篇
  2021年   101篇
  2020年   75篇
  2019年   82篇
  2018年   93篇
  2017年   65篇
  2016年   65篇
  2015年   132篇
  2014年   265篇
  2013年   218篇
  2012年   225篇
  2011年   380篇
  2010年   236篇
  2009年   153篇
  2008年   181篇
  2007年   163篇
  2006年   165篇
  2005年   122篇
  2004年   129篇
  2003年   92篇
  2002年   49篇
  2001年   39篇
  2000年   48篇
  1999年   46篇
  1998年   47篇
  1997年   32篇
  1996年   39篇
  1995年   43篇
  1994年   40篇
  1993年   26篇
  1992年   18篇
  1991年   17篇
  1990年   8篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   6篇
  1984年   19篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有3599条查询结果,搜索用时 15 毫秒
31.
Nanosecond pulsed electric fields cause melanomas to self-destruct   总被引:2,自引:0,他引:2  
We have discovered a new, drug-free therapy for treating solid skin tumors. Pulsed electric fields greater than 20 kV/cm with rise times of 30 ns and durations of 300 ns penetrate into the interior of tumor cells and cause tumor cell nuclei to rapidly shrink and tumor blood flow to stop. Melanomas shrink by 90% within two weeks following a cumulative field exposure time of 120 micros. A second treatment at this time can result in complete remission. This new technique provides a highly localized targeting of tumor cells with only minor effects on overlying skin. Each pulse deposits 0.2 J and 100 pulses increase the temperature of the treated region by only 3 degrees C, ten degrees lower than the minimum temperature for hyperthermia effects.  相似文献   
32.
Metal complex–protein interaction is an evolving concept for determining cellular targets of metallodrugs. Lacatate dehydrogenase (LDH) is critically implicated in tumor growth and therefore, considered to be an important target protein for anti-tumor metal complexes. Due to efficient biocompatibility of copper (Cu2+) and zinc (Zn2+), we synthesized CubpyAc2 · H2O (Cu-bpy) and ZnbpyAc2 · H2O (Zn-bpy; where bpy = 2,2′ bipyridine, Ac = CH3COO) complexes and evaluated their interaction with and modulation of LDH in mouse tissues. The increasing concentration of both the complexes showed a significant shift in UV–Vis spectra of LDH. The binding constant data (Kc = 1 × 103 M−1 for Cu-bpy and 7 × 106 M−1 for Zn-bpy) suggested that Zn-bpy-LDH interaction is stronger than that of Cu-bpy-LDH. LDH modulating potential of the complexes were monitored by perfusing the mice tissues with non-toxic doses of Cu-bpy and Zn-bpy followed by activity measurement and analysis of LDH isozymes on non-denaturing polyacrylamide gel electrophoresis (PAGE). As compared to the control sets, Cu-bpy caused a significant decline (P < 0.05–0.001) in the activity of LDH in all the tissues studied. However, Zn-bpy showed inhibition of LDH only in liver (P < 0.01), kidney (P < 0.001) and heart (P < 0.01), but with no effect in spleen, brain and skeletal muscle tissues. PAGE analysis suggested that all the five LDH isozymes are equally sensitive to both the complexes in the respective tissues. The results suggest that Cu- and Zn-bpy are able to interact with and inhibit LDH, a tumor growth supportive target protein at tissue level.  相似文献   
33.
Since the nineteenth century the importance of mitochondria in cellular physiology has been growing steadily. Not only the organelle harbors the main systems for ATP generation, but also buffers the redox potential in the cytosol and is one of the protagonists of the intrinsic pathway for apoptosis. In tumor cells, mitochondria went from being dysfunctional compartments to playing a supportive or perhaps even a triggering part in metastasis. This “Organelle In Focus” article discusses the classical metabolic events that occur in mitochondria and why these pathways could be essential for the onset of the malignant phenotype. Finally, we propose that the oxidative metabolism of tumor cells in conjunction with the inactivation of anoikis may have been coopted through a non-adaptive evolutionary process.  相似文献   
34.
NK Han  BC Kim  HC Lee  YJ Lee  MJ Park  SG Chi  YG Ko  JS Lee 《Proteomics》2012,12(18):2822-2832
Cellular senescence is a physiological program of irreversible growth arrest that is considered to play an important role in tumor suppression. Recent studies demonstrated that senescent cells secrete multiple growth regulatory proteins that could alter the behavior of neighboring cells. In this study, we investigated the effect of secretory proteins from ionizing radiation (IR) induced senescent tumor cells on normal and tumor cells. Conditioned medium (CM) from IR-induced senescent MCF7 cells significantly increased cell proliferation, invasion, migration, and wound healing activity in MCF7 cells and HUVECs. Comparative proteomics analysis revealed 24 differentially secreted protein spots including Raf kinase inhibitor protein (RKIP), α-Enolase, AKAP9, and MARK4, and the findings were confirmed by Western blot analysis of IR-induced senescent cancer cells. We found that RKIP was secreted via the classical pathway, and the transfection of small interfering RNA against RKIP suppressed CM-induced migration in MCF7 cells. Treatment with recombinant human RKIP increased the migratory activity of MCF7 cells. Taken together, our results demonstrate that the senescence-associated secretory protein RKIP could be the principal target to prevent the potential effects of the secretome from IR-induced senescent tumor cells on neighboring cell migration.  相似文献   
35.
沙面结皮形成与微环境变化   总被引:31,自引:0,他引:31  
研究结果表明沙坡头地区的大气年降尘(d相似文献   
36.
Both internal and external proteins in vesicular stomatitis virus were labeled when intact virions were iodinated with 50 μm iodide; however, only the surface proteins were labeled when the same procedure was carried out at low iodide concentrations (below 0.5 μm). This result together with similar observations reported earlier with another enveloped virus, Rous-associated virus-61 (RAV-61), suggest that viral envelopes provide a barrier to iodination by chloramine-T at low, but not at high, iodide concentrations. By monitoring the permeability of the RAV-61 envelope to successive iodinations and to iodination in the presence of chaotropic thiocyanate ions, it was shown that the permeability of the viral envelope was not altered at the higher concentrations of iodide. Further results support the hypothesis that iodination mediated by chloramine-T inolves two different iodinating species: (a) a membrane impermeable one, possibly “iodamine-T,” which predominates at low iodide concentrations, and (b) a membrane permeable species, possibly molecular iodine, which predominates at high concentrations of iodide. These results reinforce the proposal that the chloramine-T procedure is a useful method for specifically labeling surface proteins of lipid-enveloped structures.  相似文献   
37.
  1. Download : Download high-res image (193KB)
  2. Download : Download full-size image
Highlights
  • •AP-DIA/SWATH analysis to identify TCTP-interacting proteins in NF1 tumor cells.
  • •A highly specific TCTPEF1A2 interaction but rather than TCTPEF1A1 interaction.
  • •TCTPEF1A2 interaction mediating formation of EF1A2-elogation factor complex.
  • •TCTPEF1A2 dependent translation machinery regulating NF1 tumor cell growth.
  相似文献   
38.

Background

Urothelial bladder cancer is a highly heterogeneous disease. Cancer cell lines are useful tools for its study. This is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression.

Results

Based on gene mutation patterns and genomic changes we identify lines representative of the FGFR3-driven tumor pathway and of the TP53/RB tumor suppressor-driven pathway. High-density array copy number analysis identified significant focal gains (1q32, 5p13.1-12, 7q11, and 7q33) and losses (i.e. 6p22.1) in regions altered in tumors but not previously described as affected in bladder cell lines. We also identify new evidence for frequent regions of UPD, often coinciding with regions reported to be lost in tumors. Previously undescribed chromosome X losses found in UBC lines also point to potential tumor suppressor genes. Cell lines representative of the FGFR3-driven pathway showed a lower number of UPD events.

Conclusions

Overall, there is a predominance of more aggressive tumor subtypes among the cell lines. We provide a cell line classification that establishes their relatedness to the major molecularly-defined bladder tumor subtypes. The compiled information should serve as a useful reference to the bladder cancer research community and should help to select cell lines appropriate for the functional analysis of bladder cancer genes, for example those being identified through massive parallel sequencing.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1450-3) contains supplementary material, which is available to authorized users.  相似文献   
39.
Summary Oligodendrocytes are myelin-forming cells in the mammalian central nervous system. About 50% of oligodendrocytes undergo cell death in normal development. In addition, massive oligodendrocyte cell death has been observed in multiple sclerosis. Tumor necrosis factor (TNF) is thought to be one of the mediators responsible for the damage of oligodendrocytes in multiple sclerosis. The addition of TNF- to primary cultures of oligodendrocytes significantly decreased the number of live cells in 72 h. DNA fragmentation was detected in TNF-treated oligodendrocytes at 36 h by TUNEL assay. Chemical inhibitors Ac-YVAD-CHO (a specific inhibitor of caspase-1 [ICE]-like proteases) as well as Ac-DEVDCHO (a specific inhibitor of caspase-3[CPP32]-like proteases) enhanced the survival of oligodendrocytes treated with TNF-, indicating that caspase-1- and the caspase-3-mediated cell-death pathways are activated in TNF-induced oligodendrocyte cell death. Caspase-11 is involved in activation of caspase-1. Oligodendrocytes fromCASP-11-deficient mice are partially resistant to TNF-induced oligodendrocyte cell death. Our results suggest that the inhibition of caspases may be a novel approach to treat multiple sclerosis.  相似文献   
40.
The efficacy of systemic infusion of recombinant human macrophage-colony-stimulating factor (M-CSF) in combination with local treatment with human recombinant tumor necrosis factor (TNF) and mouse recombinant interferon (IFN) was studied in vivo on a subclone of B16 melanoma (MmB16) in mice. Short-term intravenous administration of M-CSF at a dose of 106 units daily had no antitumor effect in vivo. Similarly, local treatment of tumor with TNF (5 g daily) did not produce any therapeutic effect. However, simultaneous administration of the same dose of TNF with IFN (1000 units daily) resulted in a synergistic effects manifested by the retardation of tumor growth. Addition of systemic infusion of M-CSF to the local therapy with TNF and IFN induced further augmentation of antitumor efficacy and delayed progression of MmB16 melanoma. The strengthened antitumor effect of combination therapy including M-CSF, TNF and IFN was most probably due to the increased release of monocytes from the bone marrow, their recruitment into the site of tumor growth and subsequent local stimulation of their antitumor activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号