首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   36篇
  国内免费   8篇
  687篇
  2023年   5篇
  2022年   9篇
  2021年   24篇
  2020年   10篇
  2019年   16篇
  2018年   13篇
  2017年   17篇
  2016年   16篇
  2015年   13篇
  2014年   39篇
  2013年   36篇
  2012年   26篇
  2011年   21篇
  2010年   29篇
  2009年   20篇
  2008年   21篇
  2007年   18篇
  2006年   21篇
  2005年   16篇
  2004年   20篇
  2003年   17篇
  2002年   22篇
  2001年   17篇
  2000年   13篇
  1999年   18篇
  1998年   11篇
  1997年   11篇
  1996年   16篇
  1995年   7篇
  1994年   19篇
  1993年   4篇
  1992年   9篇
  1991年   13篇
  1990年   16篇
  1989年   11篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   15篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1972年   2篇
  1970年   2篇
排序方式: 共有687条查询结果,搜索用时 15 毫秒
31.
Oligodendrocyte-specific protein (OSP)/claudin-11 is a major component of central nervous system myelin and forms tight junctions (TJs) within myelin sheaths. TJs are essential for forming a paracellular barrier and have been implicated in the regulation of growth and differentiation via signal transduction pathways. We have identified an OSP/claudin-11-associated protein (OAP)1, using a yeast two-hybrid screen. OAP-1 is a novel member of the tetraspanin superfamily, and it is widely expressed in several cell types, including oligodendrocytes. OAP-1, OSP/claudin-11, and beta1 integrin form a complex as indicated by coimmunoprecipitation and confocal immunocytochemistry. Overexpression of OSP/claudin-11 or OAP-1 induced proliferation in an oligodendrocyte cell line. Anti-OAP-1, anti-OSP/claudin-11, and anti-beta1 integrin antibodies inhibited migration of primary oligodendrocytes, and migration was impaired in OSP/claudin-11-deficient primary oligodendrocytes. These data suggest a role for OSP/claudin-11, OAP-1, and beta1 integrin complex in regulating proliferation and migration of oligodendrocytes, a process essential for normal myelination and repair.  相似文献   
32.
Mice heterozygously deficient in the p0 gene (P0(+/-)) are animal models for some forms of inherited neuropathies. They display a progressive demyelinating phenotype in motor nerves, accompanied by mild infiltration of lymphocytes and increase in macrophages. We have shown previously that the T lymphocytes are instrumental in the demyelination process. This study addresses the functional role of the macrophage in this monogenic myelin disorder.In motor nerves of P0(+/)- mice, the number of macrophages in demyelinated peripheral nerves was increased by a factor of five when compared with motor nerves of wild-type mice. Immunoelectron microscopy, using a specific marker for mouse macrophages, displayed macrophages not only in the endoneurium of the myelin mutants, but also within endoneurial tubes, suggesting an active role in demyelination. To elucidate the roles of the macrophages, we crossbred the myelin mutants with a spontaneous mouse mutant deficient in macrophage colony-stimulating factor (M-CSF), hence displaying impaired macrophage activation. In the P0-deficient double mutants also deficient in M-CSF, the numbers of macrophages were not elevated in the demyelinating motor nerves and demyelination was less severe. These findings demonstrate an active role of macrophages during pathogenesis of inherited demyelination with putative impact on future treatment strategies.  相似文献   
33.
Heat shock proteins (HSP) or stress proteins serve as biomarkers to identify the contribution of stress situations underlying the pathogenesis of degenerative diseases of the CNS. We have analyzed by immunoblot technique the constitutive and inducible occurrence of stress proteins in cultured rat brain oligodendrocytes subjected to heat shock or oxidative stress exerted by hydrogen peroxide, or a combination of both. The data demonstrate that oligodendrocytes constitutively express HSP32, HSP60 and the cognate form of the HSP70 family of proteins, HSC70. After heat shock, HSP25, alpha B-crystallin and HSP70 were up-regulated, while after oxidative stress the specific induction of HSP32 and alpha B-crystallin was observed. HSP32 represents heme oxygenase 1 (HO-1), a small stress protein with enzymatic activity involved in the oxidative degradation of heme which participates in iron metabolism. The presence of the iron chelators phenanthroline or deferoxamine (DFO), which previously has been shown to protect oligodendrocytes from oxidative stress-induced onset of apoptosis, caused a marked stimulation of HSP32 without affecting HSP70. This indicates that DFO possibly exerts its protective role by directly influencing the antioxidant capacity of HO-1. In summary, HSP in oligodendrocytes are differentially stimulated by heat stress and oxidative stress. Heme oxygenase-1 has been linked to inflammatory processes and oxidative stress, its specific up-regulation after oxidative stress in oligodendrocytes suggests that it is an ideal candidate to investigate the involvement of oxidative stress in demyelinating diseases.  相似文献   
34.
Axonal Signals and Oligodendrocyte Differentiation   总被引:4,自引:0,他引:4  
Axons produce signals that regulate oligodendrocyte proliferation, survival, terminal differentiation, and myelinogenesis. We review here recent in vitro and in vivo experimental approaches that aim to characterize axonal signals to oligodendroglia and to identify molecular mediators that regulate differentiation of oligodendendrocytes. We propose that the promoters of myelin genes, whose activation during terminal differentiation is modulated by axonal signals, can provide a means to identify molecular mediators of axo-oligodendroglial signals.  相似文献   
35.
The myelin-associated glycoprotein (MAG) is a transmembrane cell adhesion molecule participating in myelin formation and maintenance. Calcium-activated/-dependent proteolysis of myelin-associated glycoprotein by calpain and cathepsin L-like activities has already been detected in purified myelin fractions, producing a soluble fragment, called degraded (d)MAG, characterized by the loss of the transmembrane and cytoplasmic domains. Here, we demonstrate and analyze dMAG formation from pure human brain myelin-associated glycoprotein. The activity never exhibited the high rate previously reported in human myelin fractions. Degradation is time-, temperature-, buffer- and structure-dependent, is inhibited at 4 degrees C and by denaturation of the sample, and is mediated by a trans-acting factor. There is no strict pH dependency of the proteolysis. Degradation was inhibited by excess aprotinin, but not by 1-10 micro g/mL aprotinin and was not eliminated by the use of an aprotinin-sepharose matrix during the purification. dMAG formation was not enhanced by calcium, nor inhibited by a wide variety of protease inhibitors, including specific calpain and cathepsin L inhibitors. Therefore, while cysteine proteases may be present in human myelin membrane fractions, they are not involved in dMAG formation from highly purified human brain myelin-associated glycoprotein preparations.  相似文献   
36.
Neurofilaments are essential for acquisition of normal axonal calibers. Several lines of evidence have suggested that neurofilament-dependent structuring of axoplasm arises through an "outside-in" signaling cascade originating from myelinating cells. Implicated as targets in this cascade are the highly phosphorylated KSP domains of neurofilament subunits NF-H and NF-M. These are nearly stoichiometrically phosphorylated in myelinated internodes where radial axonal growth takes place, but not in the smaller, unmyelinated nodes. Gene replacement has now been used to produce mice expressing normal levels of the three neurofilament subunits, but which are deleted in the known phosphorylation sites within either NF-M or within both NF-M and NF-H. This has revealed that the tail domain of NF-M, with seven KSP motifs, is an essential target for the myelination-dependent outside-in signaling cascade that determines axonal caliber and conduction velocity of motor axons.  相似文献   
37.
In this work we analyzed variations in the expression of MBPs and P0 in ligated sciatic nerves of young and adult rats at 3, 7, and 14 days postligation (PL), by immunohistochemistry and SDS-PAGE of isolated myelin. A protein redistribution was seen in the distal stump of ligated nerves with the appearance of immunoreactive clusters. Using the KS400 image analyzer, immunostained area values were obtained from the different nerves dissected. In adult rats, there was an increase of the immunostained area for MBP from 3 to 7 days PL, coincident with a reorganization of the marker in clusters, followed by a marked decrease at 14 days. P0 immunolabeling gave similar results without, however, a decrease of the immunostained area at the longer survival time tested. Young animals showed an acceleration in the process of protein redistribution and digestion within ligated nerves, which followed a similar pattern as that of adult animals. Analysis by electrophoresis showed a marked decrease in P0 and MBP at 7 days PL in young rats and 14 days PL in adult rats. The functional significance of protein clustering within myelin in injured nerves deserves further analysis.  相似文献   
38.
Decreased phosphorylation of neurofilaments in mice lacking myelin-associated glycoprotein (MAG) was shown to be associated with decreased activities of extracellular-signal regulated kinases (ERK1/2) and cyclin-dependent kinase-5 (cdk5). These in vivo changes could be caused directly by the absence of a MAG-mediated signaling pathway or secondary to a general disruption of the Schwann cell-axon junction that prevents signaling by other molecules. Therefore, in vitro experimental paradigms of MAG interaction with neurons were used to determine if MAG directly influences expression and phosphorylation of cytoskeletal proteins and their associated kinases. COS-7 cells stably transfected with MAG or with empty vector were co-cultured with primary dorsal root ganglion (DRG) neurons. Total amounts of the middle molecular weight neurofilament subunit (NF-M), microtubule-associated protein 1B (MAP1B), MAP2, and tau were up-regulated significantly in DRG neurons in the presence of MAG. There was also increased expression of phosphorylated high molecular weight neurofilament subunit (NF-H), NF-M, and MAP1B. Additionally, in similar in vitro paradigms, total and phosphorylated NF-M were increased significantly in PC12 neurons co-cultured with MAG-expressing COS cells or treated with a soluble MAG Fc-chimera. The increased expression of phosphorylated cytoskeletal proteins in the presence of MAG in vitro was associated with increased activities of ERK 1/2 and cdk5. We propose that interaction of MAG with an axonal receptor(s) induces a signal transduction cascade that regulates expression of cytoskeletal proteins and their phosphorylation by these proline-directed protein kinases.  相似文献   
39.
Exposure of mice to the copper chelator, cuprizone, results in CNS demyelination. There is remyelination after removal of the metabolic insult. We present brain regional studies identifying corpus callosum as particularly severely affected; 65% of cerebroside is lost after 6 weeks of exposure. We examined recovery of cerebroside and ability to synthesize cerebroside and cholesterol following removal of the toxicant. The temporal pattern for concentration of myelin basic protein resembled that of cerebroside. We applied Affymetrix GeneChip technology to corpus callosum to identify temporal changes in levels of mRNAs during demyelination and remyelination. Genes coding for myelin structural components were greatly down-regulated during demyelination and up-regulated during remyelination. Genes related to microglia/macrophages appeared in a time-course (peaking at 6 weeks) correlating with phagocytosis of myelin and repair of lesions. mRNAs coding for many cytokines had peak expression at 4 weeks, compatible with intercellular signaling roles. Of interest were other genes with temporal patterns correlating with one of the three above patterns, but of function not obviously related to demyelination/remyelination. The ability to correlate gene expression with known pathophysiological events should help in elucidating further function of such genes as related to demyelination/remyelination.  相似文献   
40.
The myelin and lymphocyte protein (MAL) proteolipid is localized in central and peripheral compact myelin membranes, as well as in apical membranes of particular polarized cells. In this study, we addressed the question whether MAL and other peripheral myelin proteins are sorted and targeted to myelin membranes using mechanisms similar to those observed in polarized epithelial cells. To investigate the presence of raft-mediated sorting pathways in Schwann cells, we have isolated and analysed their composition in myelin membranes. Here, we show that rafts are present in adult human and rat peripheral compact myelin membranes and contain MAL, the GPI-anchored protein CD59, and substantial amounts of the PMP22 and P0. Colocalization studies show that CD59, and MAL have an almost identical expression pattern within compact myelin. Moreover, immuno-electron microscopy revealed that MAL, besides its localization in compact myelin, is also localized to Schmidt-Lanterman incisures. Taken together, our results demonstrate the presence of detergent-insoluble glycolipid-enriched complexes (DIGs) in different compartments of myelin membranes and indicate an important role for DIG-mediated transport mechanisms in the maintenance of the adult myelin sheath.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号