首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2324篇
  免费   49篇
  国内免费   39篇
  2023年   11篇
  2022年   13篇
  2021年   16篇
  2020年   14篇
  2019年   21篇
  2018年   27篇
  2017年   19篇
  2016年   26篇
  2015年   119篇
  2014年   336篇
  2013年   282篇
  2012年   361篇
  2011年   376篇
  2010年   257篇
  2009年   44篇
  2008年   45篇
  2007年   42篇
  2006年   32篇
  2005年   36篇
  2004年   26篇
  2003年   33篇
  2002年   16篇
  2001年   19篇
  2000年   12篇
  1999年   10篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   9篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   8篇
  1988年   8篇
  1987年   12篇
  1986年   5篇
  1985年   10篇
  1984年   16篇
  1983年   7篇
  1982年   10篇
  1981年   10篇
  1980年   7篇
  1979年   6篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1973年   4篇
  1970年   4篇
排序方式: 共有2412条查询结果,搜索用时 62 毫秒
141.
We demonstrate herein that human macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine expressed in the brain and not previously considered to be amyloidogenic, forms amyloid fibrils similar to those derived from the disease associated amyloidogenic proteins beta-amyloid and alpha-synuclein. Acid denaturing conditions were found to readily induce MIF to undergo amyloid fibril formation. MIF aggregates to form amyloid-like structures with a morphology that is highly dependent on pH. The mechanism of MIF amyloid formation was probed by electron microscopy, turbidity, Thioflavin T binding, circular dichroism spectroscopy, and analytical ultracentrifugation. The fibrillar structures formed by MIF bind Congo red and exhibit the characteristic green birefringence under polarized light. These results are consistent with the notion that amyloid fibril formation is not an exclusive property of a select group of amyloidogenic proteins, and contribute to a better understanding of the factors which govern protein conformational changes and amyloid fibril formation in vivo.  相似文献   
142.
Besides its traditional role in hemostasis, factor XIII subunit A (FXIII-A) is supposed to function as a cellular transglutaminase and to be involved in certain intracellular processes, including cytoskeletal remodeling. To investigate its intracellular role, the aim of the present study was to follow changes in FXIII-A production in combination with the receptor-mediated phagocytic activities of monocytes/macrophages and to examine the phagocytic functions of monocytes in patients with FXIII-A deficiency. Human blood monocytes were isolated from the buffy coats of healthy volunteers and cultured for 4 days. The FcgammaR-mediated phagocytosis of sensitized erythrocytes (EA) and the complement receptor (CR)-mediated phagocytosis of complement-coated yeast particles were studied during monocyte/macrophage differentiation. Changes in the gene expression of FXIII-A were detected by real-time quantitative RT-PCR. FXIII-A protein production was investigated with fluorescent image analysis at single cell level and Western immunoblot analysis. Both the FcgammaR and CR-mediated phagocytosis increased during culturing, which peaked on day 3. The phagocytic activity of the cells could be markedly inhibited with monodansylcadaverine, an inhibitor of the transglutaminase-induced crosslinking of proteins. The phagocytosis of EA, complement-coated and uncoated yeast particles was found to be strongly diminished in monocytes of FXIII-A deficient patients. The phagocytic functions of cultured cells showed a change in parallel with the alterations in FXIII-A mRNA expression, as well as with that in FXIII-A in protein synthesis detected by image and Western immunoblot analyses in concert. Our results suggest that FXIII-A plays a role in the Fcgamma and complement receptor-mediated phagocytic activities of monocytes/macrophages.  相似文献   
143.
The 3D structure of human factor VIIa/soluble tissue factor in complex with a peptide mimetic inhibitor, propylsulfonamide-D-Thr-Met-p-aminobenzamidine, is determined by X-ray crystallography. As compared with the interactions between thrombin and thrombin inhibitors, the interactions at S2 and S3 sites characteristic of factor VIIa and factor VIIa inhibitors are revealed. The S2 site has a small pocket, which is filled by the hydrophobic methionine side chain in P2. The small S3 site fits the small size residue, D-threonine in P3. The structural data and SAR data of the peptide mimetic inhibitor show that these interactions in the S2 and S3 sites play an important role for the improvement of selectivity versus thrombin. The results will provide valuable information for the structure-based drug design of specific inhibitors for FVIIa/TF.  相似文献   
144.
This study summarises the biochemical and functional properties of a new generation plasma-derived, double virus inactivated von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate, Wilate, targeted for the treatment of both von Willebrand disease (VWD) and haemophilia A. The manufacturing process comprises two chromatographic steps based on different performance principles, ensuring a high purity of the concentrate (mean specific activity in 15 consecutive production batches: 122 IU FVIII:C/mg total protein) and, thus, minimising the administered protein load to the patient (specification: < or = 15 mg total protein per 900 IU Wilate). The optimised solvent/detergent (S/D) treatment and prolonged terminal dry-heat (PermaHeat) treatment of the lyophilised product at a specified residual moisture (RM) provide two mechanistically independent, effective and robust virus inactivation procedures for enveloped viruses and one step for non-enveloped viruses. These process steps are aggressive enough to inactivate viruses efficiently, but yet gentle enough to maintain the structural integrity and function of the VWF and FVIII molecules, as proven by state-of-the-art assays covering the diverse features of importance. The VWF multimeric pattern is close to the one displayed by normal plasma, with a consistent content of more than 10 multimers, but a relatively lower portion of the very high multimers. The multimeric triplet structure is normal, underlining the gentle and effective manufacturing process, which does not require the addition of protein stabilisers at any step. The balanced activity ratio of VWF to FVIII is close to that of plasma from healthy subjects, rendering Wilate suitable also for the safe and effective treatment of patients with VWD.  相似文献   
145.
Endocytosis and trafficking of receptors and nutrient transporters are dependent on an acidic intra-endosomal pH that is maintained by the vacuolar H+-ATPase (V-ATPase) proton pump. V-ATPase activity has also been associated with cancer invasiveness. Here, we report on a new V-ATPase-associated protein, which we identified in insulin-like growth factor I (IGF-I) receptor-transformed cells, and which was separately identified in Caenorhabditis elegans as HRG-1, a member of a family of heme-regulated genes. We found that HRG-1 is present in endosomes but not in lysosomes, and it is trafficked to the plasma membrane upon nutrient withdrawal in mammalian cells. Suppression of HRG-1 with small interfering RNA causes impaired endocytosis of transferrin receptor, decreased cell motility, and decreased viability of HeLa cells. HRG-1 interacts with the c subunit of the V-ATPase and enhances V-ATPase activity in isolated yeast vacuoles. Endosomal acidity and V-ATPase assembly are decreased in cells with suppressed HRG-1, whereas transferrin receptor endocytosis is enhanced in cells that overexpress HRG-1. Cellular uptake of a fluorescent heme analogue is enhanced by HRG-1 in a V-ATPase-dependent manner. Our findings indicate that HRG-1 regulates V-ATPase activity, which is essential for endosomal acidification, heme binding, and receptor trafficking in mammalian cells. Thus, HRG-1 may facilitate tumor growth and cancer progression.  相似文献   
146.
ClC-3 is a Cl/H+ antiporter required for cytokine-induced intraendosomal reactive oxygen species (ROS) generation by Nox1. ClC-3 current is distinct from the swelling-activated chloride current (IClswell), but overexpression of ClC-3 can activate currents that resemble IClswell. Because H2O2 activates IClswell directly, we hypothesized that ClC-3-dependent, endosomal ROS production activates IClswell. Whole-cell perforated patch clamp methods were used to record Cl currents in cultured aortic vascular smooth muscle cells from wild type (WT) and ClC-3 null mice. Under isotonic conditions, tumor necrosis factor-α (TNF-α) (10 ng/ml) activated outwardly rectifying Cl currents with time-dependent inactivation in WT but not ClC-3 null cells. Inhibition by tamoxifen (10 μm) and by hypertonicity (340 mosm) identified them as IClswell. IClswell was also activated by H2O2 (500 μm), and the effect of TNF-α was completely inhibited by polyethylene glycol-catalase. ClC-3 expression induced IClswell in ClC-3 null cells in the absence of swelling or TNF-α, and this effect was also blocked by catalase. IClswell activation by hypotonicity (240 mosm) was only partially inhibited by catalase, and the size of these currents did not differ between WT and ClC-3 null cells. Disruption of endosome trafficking with either mutant Rab5 (S34N) or Rab11 (S25N) inhibited TNF-α-mediated activation of IClswell. Thrombin also activates ROS production by Nox1 but not in endosomes. Thrombin caused H2O2-dependent activation of IClswell, but this effect was not ClC-3- or Rab5-dependent. Thus, activation of IClswell by TNF-α requires ClC-3-dependent endosomal H2O2 production. This demonstrates a functional link between two distinct anion currents, ClC-3 and IClswell.  相似文献   
147.
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.  相似文献   
148.
The upstream signaling pathway leading to the activation of AMP-activated protein kinase (AMPK) by high density lipoprotein (HDL) and the role of AMPK in HDL-induced antiatherogenic actions were investigated. Experiments using genetic and pharmacological tools showed that HDL-induced activation of AMPK is dependent on both sphingosine 1-phosphate receptors and scavenger receptor class B type I through calcium/calmodulin-dependent protein kinase kinase and, for scavenger receptor class B type I system, additionally serine-threonine kinase LKB1 in human umbilical vein endothelial cells. HDL-induced activation of Akt and endothelial NO synthase, stimulation of migration, and inhibition of monocyte adhesion and adhesion molecule expression were dependent on AMPK activation. The inhibitory role of AMPK in the adhesion molecule expression and monocyte adhesion on endothelium of mouse aorta was confirmed in vivo and ex vivo. On the other hand, stimulation of ERK and proliferation were hardly affected by AMPK knockdown but completely inhibited by an N17Ras, whereas the dominant-negative Ras was ineffective for AMPK activation. In conclusion, dual HDL receptor systems differentially regulate AMPK activity through calcium/calmodulin-dependent protein kinase kinase and/or LKB1. Several HDL-induced antiatherogenic actions are regulated by AMPK, but proliferation-related actions are regulated by Ras rather than AMPK.  相似文献   
149.
In vascular smooth muscle cells, exposed to hyperglycemia and insulin-like growth factor-I (IGF-I), SHPS-1 functions as a scaffold protein, and a signaling complex is assembled that leads to AKT activation. However, the underlying mechanism by which formation of this complex activates the kinase that phosphorylates AKT (Thr308) is unknown. Therefore, we investigated the mechanism of PDK1 recruitment to the SHPS-1 signaling complex and the consequences of disrupting PDK1 recruitment for downstream signaling. Our results show that following IGF-I stimulation, PDK1 is recruited to SHPS-1, and its recruitment is mediated by Grb2, which associates with SHPS-1 via its interaction with Pyk2, a component of the SHPS-1-associated complex. A proline-rich sequence in PDK1 bound to an Src homology 3 domain in Grb2 in response to IGF-I. Disruption of Grb2-PDK1 by expression of either a Grb2 Src homology 3 domain or a PDK1 proline to alanine mutant inhibited PDK1 recruitment to SHPS-1, leading to impaired IGF-I-stimulated AKT Thr308 phosphorylation. Following its recruitment to SHPS-1, PDK1 was further activated via Tyr373/376 phosphorylation, and this was required for a maximal increase in PDK1 kinase activity and AKT-mediated FOXO3a Thr32 phosphorylation. PDK1 recruitment was also required for IGF-I to prevent apoptosis that occurred in response to hyperglycemia. Assembly of the Grb2-PDK1 complex on SHPS-1 was specific for IGF-I signaling because inhibiting PDK1 recruitment to SHPS-1 had no effect on EGF-stimulated AKT Thr308 phosphorylation. These findings reveal a novel mechanism for recruitment of PDK1 to the SHPS-1 signaling complex, which is required for IGF-I-stimulated AKT Thr308 phosphorylation and inhibition of apoptosis.  相似文献   
150.
Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号