首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1956篇
  免费   108篇
  国内免费   30篇
  2023年   24篇
  2022年   29篇
  2021年   49篇
  2020年   50篇
  2019年   60篇
  2018年   53篇
  2017年   31篇
  2016年   31篇
  2015年   40篇
  2014年   64篇
  2013年   127篇
  2012年   64篇
  2011年   68篇
  2010年   63篇
  2009年   53篇
  2008年   79篇
  2007年   94篇
  2006年   91篇
  2005年   84篇
  2004年   84篇
  2003年   71篇
  2002年   97篇
  2001年   102篇
  2000年   88篇
  1999年   63篇
  1998年   61篇
  1997年   32篇
  1996年   35篇
  1995年   18篇
  1994年   23篇
  1993年   42篇
  1992年   22篇
  1991年   22篇
  1990年   10篇
  1989年   23篇
  1988年   22篇
  1987年   9篇
  1986年   14篇
  1985年   15篇
  1984年   17篇
  1983年   12篇
  1982年   21篇
  1981年   3篇
  1980年   6篇
  1979年   11篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   3篇
排序方式: 共有2094条查询结果,搜索用时 296 毫秒
121.
Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew.  相似文献   
122.
The trafficking of intracellular membranes requires the coordination of membrane-cytoskeletal interactions. Rab proteins are key players in the regulation of vesicular transport, while Rho family members control actin-dependent cell functions. We have previously identified a rho protein, rhoD, which is localized to the plasma membrane and early endosomes. When overexpressed, rhoD alters the actin cytoskeleton and plays an important role in endosome organization. We found that a rhoD mutant exerts its effect on early endosome dynamics through an inhibition in organelle motility. In these studies, the effect of rhoD on endosome dynamics was evaluated in the presence of a constitutively active, GTPase-deficient mutant of rab5, rab5Q79L. As rab5Q79L itself stimulates endosome motility, rhoD might counteract this stimulation, without itself exerting any effect in the absence of rab5 activation. We have now addressed this issue by investigating the effect of rhoD in the absence of co-expressed rab5. We find that rhoDG26V alone alters vesicular dynamics. Vesicular movement, in particular the endocytic/recycling circuit, is altered during processes such as cell motility. Due to the participation of vesicular motility and cytoskeletal rearrangements in cell movement and the involvement of rhoD in both, we have addressed the role of rhoD in this process and have found that rhoDG26V inhibits endothelial cell motility.  相似文献   
123.
Changes in the protein secondary structure and electron transport activity of the Triton X-100-treated photosystem I (PSI) and photosystem II (PSII) complexes after strong illumination treatment were studied using Fourier transform-infrared (FT-IR) spectroscopy and an oxygen electrode. Short periods of photoinhibitory treatment led to obvious decreases in the rates of PSI-mediated electron transport activity and PSII-mediated oxygen evolution in the native or Triton-treated PSI and PSII complexes. In the native PSI and PSII complexes, the protein secondary structures had little changes after the photoinhibitory treatment. However, in both Triton-treated PSI and PSII complexes, short photoinhibition times caused significant loss of -helical content and increase of -sheet structure, similar to the conformational changes in samples of Triton-treated PSI and PSII complexes after long periods of dark incubation. Our results demonstrate that strong-light treatment to the Triton-treated PSI and PSII complexes accelerates destruction of the transmembrane structure of proteins in the two photosynthetic membranes.  相似文献   
124.
We tested the hypothesis that a pressure difference can cause blebbing associated with uncoupling of the plasma membrane from the cortical actin, a phenomenon found earlier in locomoting blebbing Walker carcinosarcoma cells. Untreated, initially spherical Walker carcinosarcoma cells were exposed to suction pressure by partial aspiration into micropipettes. The suction pressure required to induce blebbing was in the range of 0.9-3 cm H2O, i.e., somewhat lower than the increase in intracellular pressure measured before formation of protrusions in Amoeba proteus (Yanai et al., Cell Motil. Cytoskeleton 33, 22-29, 1996). The response was temperature-dependent, blebbing occurring more frequently at 37 degrees C than at room temperature. Blebbing was associated with formation of cytoplasmic actin layers, restriction rings and/or of gaps in the plasma membrane-associated cortical actin. The results support the view that blebbing associated with uncoupling of cortical actin and plasma membrane as observed in locomoting cells can be caused by a pressure gradient.  相似文献   
125.
Microinjection of fluorophore-tagged cytoskeletal proteins has been a useful tool in studies of formation of focal adhesions (FA). We used this method to study the maintenance of adherens junctions (AJ) and tight junctions (TJ) of epithelial Madin-Darby bovine kidney cells. We chose alpha-actinin and vinculin as markers, because they are present both at adherens junctions and focal adhesions and their binding partners have been well characterized. Isolated FITC-labelled chicken alpha-actinin and vinculin were injected into confluent cells where they were rapidly incorporated both in FAs and AJs. The FAs remained unchanged, whereas cell-cell contacts began to fade within an hour after injection and the cells were joined to polykaryons having 5 to 13 nuclei. Short fragments of cell membranes containing injected proteins, actin, beta-catenin, cadherin, claudin, occludin and ZO-1 were visible inside the polykaryons indicating that both AJs and TJs were disintegrated as a single complex. Microinjected FITC-labelled vinculin head domain was also incorporated to both AJs and FAs, but instead of fusions it rapidly induced the detachment of the cells from the substratum probably due to high affinity of vinculin head to talin. Vinculin tail domain had no apparent effect on the cell morphology. Since small GTPases are involved in the building up of AJs, we injected active and inactive forms of cdc42 and rac proteins together with vinculin to see their effect. Active forms reduced the formation of polykaryons presumably by strengthening AJs, whereas inactive forms had no apparent effect. We suggest that excess alpha-actinin and vinculin uncouple the cell-cell adhesion junctions from the intracellular cytoskeleton which leads to fragmentation of junctional complexes and subsequent cell fusion. The results show that cell-cell adhesion sites are more dynamic and more sensitive than FAs to an imbalance in the amount of free alpha-actinin and intact vinculin.  相似文献   
126.
The small adaptor protein RIL consists of two segments, the C-terminal LIM and the N-terminal PDZ domain, which mediate multiple protein-protein interactions. The RIL LIM domain can interact with PDZ domains in the protein tyrosine phosphatase PTP-BL and with the PDZ domain of RIL itself. Here, we describe and characterise the interaction of the RIL PDZ domain with the zyxin-related protein TRIP6, a protein containing three C-terminal LIM domains. The second LIM domain in TRIP6 is sufficient for a strong interaction with RIL. A weaker interaction with the third LIM domain in TRIP6, including the proper C-terminus, is also evident. TRIP6 also interacts with the second out of five PDZ motifs in PTP-BL. For this interaction to occur both the third LIM domain and the proper C-terminus are necessary. RNA expression analysis revealed overlapping patterns of expression for TRIP6, RIL and PTP-BL, most notably in tissues of epithelial origin. Furthermore, in transfected epithelial cells TRIP6 can be co-precipitated with RIL and PTP-BL PDZ polypeptides, and a co-localisation of TRIP6 and RIL with Factin structures is evident. Taken together, PTP-BL, RIL and TRIP6 may function as components of multi-protein complexes at actin-based sub-cellular structures.  相似文献   
127.
Role of P30 in replication and spread of TMV   总被引:2,自引:1,他引:1  
The P30 movement protein (MP) of tobacco mosaic virus is essential for distribution of sites of replication within infected cells and for cell–cell spread of infection. MP is an integral membrane protein and in early and mid-stages of infection causes severe disruption of the cortical endoplasmic reticulum (ER). MP also associates with microtubules, and in late stages is targeted for degradation by the 26S proteosome. During these stages, the ER regains its normal pre-infection configuration. Viral RNA is associated with ER and microtubules in the presence of MP. The MP is phosphorylated and mutation of the phosphorylated amino acid reduced association of MP with the ER, plasmodesmata, and microtubules, and altered the stability of the MP. The nature of the association of MP with vRNA and ER and microtubules, and the role of phosphorylation of MP in each of these functions, if any, remains to be determined.  相似文献   
128.
Membrane traffic and cytokinesis   总被引:2,自引:1,他引:1  
Cytokinesis, the last step in cell division, is a process common to all eukaryotic life forms. The many mechanisms cells use to divide one parent cell into two progeny reflect the diversity of eukaryotic life. Despite the varied mechanisms cells use, increasing evidence demonstrates that many different cells use 'classical' membrane trafficking proteins for cytokinesis. This review highlights recent evidence for roles for membrane trafficking proteins in cytokinesis.  相似文献   
129.
Brimmer A  Weber K 《Protist》2000,151(2):171-180
The oral filaments of the ciliate Tetrahymena consist of the tetrins, insoluble polypeptides with molecular masses of around 85 kD. We characterised the tetrins of T. thermophila by two-dimensional gels and derived a large number of peptide sequences by in gel digestion. Using RT-PCR techniques and RACE-PCR, the complete cDNA sequences of tetrins A, B and C were established. Although tetrins differ strikingly in protein sequence they show a common structural principle. A N-terminal domain of 60 to 100 residues contains most of the proline residues of the tetrins and is probably globular. It is followed by a long alpha-helical domain of 620 to 640 residues which either lacks prolines or in tetrin A contains a single proline residue. Although this long domain has coiled coil forming ability, the individual heptad repeats are not extensive. Tetrins are novel cytoskeletal proteins unique to ciliates. Since the three tetrin sequences account for all 900 amino acid residues obtained by microsequencing of peptides, an additional major tetrin seems excluded. A minor component D is related to tetrin B by peptide sequences. The isoelectric variants, particularly obvious for tetrin A, most likely reflect post-translational modifications. These could arise by phosphorylation of serines and threonines in the proline rich N-terminal domain.  相似文献   
130.
Tight Junctions of the Blood–Brain Barrier   总被引:17,自引:0,他引:17  
1. The blood–brain barrier is essential for the maintainance and regulation of the neural microenvironment. The blood–brain barrier endothelial cells comprise an extremely low rate of transcytotic vesicles and a restrictive paracellular diffusion barrier. The latter is realized by the tight junctions between the endothelial cells of the brain microvasculature, which are subject of this review. Morphologically, blood–brain barrier-tight junctions are more similar to epithelial tight junctions than to endothelial tight junctions in peripheral blood vessels.2. Although blood–brain barrier-tight junctions share many characteristics with epithelial tight junctions, there are also essential differences. However, in contrast to tight junctions in epithelial systems, structural and functional characteristics of tight junctions in endothelial cells are highly sensitive to ambient factors.3. Many ubiquitous molecular constituents of tight junctions have been identified and characterized including claudins, occludin, ZO-1, ZO-2, ZO-3, cingulin, and 7H6. Signaling pathways involved in tight junction regulation comprise, among others, G-proteins, serine, threonine, and tyrosine kinases, extra- and intracellular calcium levels, cAMP levels, proteases, and TNF. Common to most of these pathways is the modulation of cytoskeletal elements which may define blood–brain barrier characteristics. Additionally, cross-talk between components of the tight junction– and the cadherin–catenin system suggests a close functional interdependence of the two cell–cell contact systems.4. Recent studies were able to elucidate crucial aspects of the molecular basis of tight junction regulation. An integration of new results into previous morphological work is the central intention of this review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号