首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2451篇
  免费   87篇
  国内免费   98篇
  2023年   7篇
  2022年   5篇
  2021年   15篇
  2020年   25篇
  2019年   25篇
  2018年   17篇
  2017年   27篇
  2016年   29篇
  2015年   42篇
  2014年   37篇
  2013年   60篇
  2012年   30篇
  2011年   34篇
  2010年   29篇
  2009年   69篇
  2008年   110篇
  2007年   124篇
  2006年   107篇
  2005年   95篇
  2004年   106篇
  2003年   107篇
  2002年   113篇
  2001年   120篇
  2000年   103篇
  1999年   116篇
  1998年   90篇
  1997年   111篇
  1996年   85篇
  1995年   96篇
  1994年   68篇
  1993年   95篇
  1992年   80篇
  1991年   64篇
  1990年   61篇
  1989年   58篇
  1988年   41篇
  1987年   35篇
  1986年   34篇
  1985年   44篇
  1984年   39篇
  1983年   17篇
  1982年   25篇
  1981年   16篇
  1980年   9篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1972年   5篇
排序方式: 共有2636条查询结果,搜索用时 15 毫秒
21.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   
22.
The effect of soil salinity and soil moisture on the growth and yield of maxipak wheat (Triticum aestivum L.) was studied in a lath-house experiment in whih, chloride-sulphate salt mixtures were used to artificially salinize a sandy loam soil from Al-Jadyriah Baghdad. Five soil salinity levels of ECe's equal to 1.7 (Control) 4.2, 5.8, 8.1, 9.4 and 11.0dSm–1 were prepared and used at 3 levels of available soil moisture depletion, namely, 25, 50, and 75% as determined by weight. Both growth (vegetative) and yield components were studied throughout the growing season.Results showed that increasing the soil salinity from 1.7 to 11.0 dSm–1, and decreasing the available soil water from 75 to 25% resulted in independent and significant decreases in Mazipak wheat growth and yield components at different stages of plant development. Root growth showed more sensitivity to both available soil water and soil salinity level than other components. It has been concluded that at soil salinity levels of more than 8.0 dSm–1, available soil water became a limiting factor on wheat growth and the maintenance of 75% of available soil water during the growth period is recommended to obtain satisfactory grain yield.  相似文献   
23.
Summary Nine Triticum durumT. monococcum amphiploids (AABBAmAm) were synthesized by chromosome doubling of sterile triploid F1 hybrids involving nine T. durum (AABB) cultivars and a T. monococcum (AmAm) line. The triploid F1 hybrids had a range of 4–7 bivalents and 7–13 univalents per PMC. The synthetic amphiploids, however, showed a high degree of preferential pairing of chromosomes of the A genomes of diploid and tetraploid wheats. The amphiploids were meiotically stable and fully fertile. Superiority of four amphiploids for tiller number per plant, 100-grain weight, protein content and resistance to Karnal bunt demonstrated that these could either be commercially exploited as such after overcoming certain inherent defects or used to introgress desirable genes into durum and bread wheat cultivars. Methods for improvement of these amphiploids are discussed.  相似文献   
24.
Summary Allozymic variation in proteins encoded by 48 loci was analyzed electrophoretically in 1984 and 1985 in 137 individual plants of wild emmer wheat, Triticum dicoccoides, from a microsite in Yehudiyya, northeast of the Lake of Galilee, Israel. The test involved two climatic microniches in the open Tabor oak forest (1) sunny between trees and (2) shady under trees' canopies. Significant genetic differentiation at single-, two- and multilocus structures was found between neighboring climatic niches, which were only separated by a few meters. Our results suggest that allozyme polymorphisms in wild emmer wheat are partly adaptive, and differentiate primarily at the multilocus level by climatic factors presumably related to aridity stress.  相似文献   
25.
Summary Two winter wheat genotypes (Diószegi 200 and Mv 15) were compared for their in vitro androgenic capacity. On average, the induction frequency of embryogenic structures was 71.7% in Diószegi 200 and only 4.3% in Mv 15. The haploid induction ability of the two genotypes differed considerably, with Diószegi 200 being much higher. The difference in the in vitro inductability of the microspores may result from genetic differences which are manifested in the survival rate of the microspores during the culture period and their adaptability to in vitro conditions. Special DNA fluorochrornes were suitable for studying the different pathways of in vitro androgenesis. Our data indicate that the repeated equal divisions of the microspore nucleus might lead to pollen embryo formation, and subsequent divisions of the vegetative portion of the pollen grain after the first asymmetric microspore mitosis can result in pollen callus formation.  相似文献   
26.
A collection of 44 cloned 5S DNA units fromTriticum aestivum cv. Chinese Spring were grouped into 12 sequence-types based on sequence similarity and the respective consensus sequences were then produced. The relationship between these 12 consensus sequences (T. aestivum S 1-S 8 andT. aestivum L 1-L 4), together with two clones sequenced byGerlach andDyer, and the 5S DNA consensus sequences from diploidTriticum spp. were then determined by numerical methods. Both phenetic and cladistic analyses were carried out. The following wheat 5S DNA sequences were found to group with respective sequences from diploidTriticum spp.:T. aestivum S 4, S 6 withT. tauschii S;T. aestivum S 3 withT. monococcum S andT. monococcum S-Rus 7;T. aestivum L 1 andT. aestivum L-G&D withT. speltoides L;T. aestivum L 2, L 3 withT. tauschii L;T. aestivum L 4 withT. monococcum L andT. monococcum L-Rus 12. The analyses suggested that 5 out of the 65S Dna loci present in wheat were identified at the sequence level. The locus that could not be identified in this analysis was the5S Dna-B 1 locus. A group ofT. aestivum sequences (T. aestivum S 1, S 7, S 8, S-G&D) were found to be distinct from the other 5S DNA sequences in the data base. The existence of the distinct group of 5S DNA sequences suggests that there is a gap in our current understanding of wheat evolution with respect to the5S Dna loci.  相似文献   
27.
Silicon accumulation and water uptake by wheat   总被引:2,自引:0,他引:2  
Silicon (Si) content in cereal plants and soil-Si solubility may be used to estimate transpiration, assuming passive Si uptake. The hypothesis for passive-Si uptake by the transpiration stream was tested in wheat (Triticum aestivum cv. Stephens) grown on the irrigated Portneuf silt loam soil (Durixerollic calciorthid) near Twin Falls, Idaho. Treatments consisted of 5 levels of plant-available soil water ranging from 244 to 776 mm provided primarily by a line-source sprinkler irrigation system. Evapotranspiration was determined by the water-balance method and water uptake was calculated from evapotranspiration, shading, and duration of wet-surface soil. Water extraction occurred from the 0 to 150-cm zone in which equilibrium Si solubility (20°C) was 15 mg Si L–1 in the Ap and Bk (0–58 cm depth) and 23 mg Si L–1 in the Bkq (58–165 cm depth).At plant maturity, total Si uptake ranged from 10 to 32 g m–2, above-ground dry matter from 1200 to 2100 g m–2 and transpiration from 227 to 546 kg m–2. Silicon uptake was correlated with transpiration (Siup=–07+06T, r2=0.85) and dry matter yield with evapotranspiration (Y=119+303ET, r2=0.96). Actual Si uptake was 2.4 to 4.7 times that accounted for by passive uptake, supporting designation of wheat as a Si accumulator. The ratio of Si uptake to water uptake increased with soil moisture. The confirmation of active Si uptake precludes using Si uptake to estimate water use by wheat.  相似文献   
28.
Seedlings of two cultivars of wheat (Triticum aestivum L.) differing in tolerance to aluminium (Al) were grown using a split-root sand/soil culture technique. Each culture tube was divided horizontally into a surface (0–150 mm) compartment and a subsurface (150–250 mm) compartment separated by a root-permeable paraffin wax barrier. Thus phosphorus (P) supplied to surface roots could not percolate or diffuse into the soil in the subsurface compartment. The soil in the subsurface compartment was divided into ‘rhizosphere’ and ‘non-rhizosphere’ zones using a porous (5 μm) membrane. Root growth of both cultivars into the subsurface zone was enhanced by increased P supply to surface roots, but did not conform to known relationships between root growth and soil pH, extractable-Al, or pH, Al or P concentrations in soil solution. Concentrations of Al in soil solution in the rhizosphere were greater than those in solution in the bulk soil. Concentrations of Al reactive with pyrocatechol violet (30s-RRAI) in the rhizosphere soil solution were generally greater than those in non-rhizosphere soil. With the Al-sensitive cultivar, root dry weight and length increased as concentrations of RRAl in the rhizosphere soil solution increased. Increased concentrations of Al in rhizosphere soil solutions were not related to the presence of organic ligands in solution. The effect of P in promoting root penetration into the acidic subsurface stratum was not related to differential attainment of maturity by the plant shoots, but appeared to be related to the effect of P in enhancing the rate of root growth. Thus, suboptimal supply of P to the surface roots of a plant, even at levels sufficient to preclude development of nutritional (P) stress symptoms, may seriously reduce tolerance to Al, and hence diminish the ability of roots to penetrate into acidic subsoils.  相似文献   
29.
What limits nitrate uptake from soil?   总被引:11,自引:4,他引:7  
Abstract. An accepted view, that unless nitrate concentrations in the soil solution are very low (e.g. below 0.1–0.2 mol m?3) the growth of high-yielding crops is not limited by the availability of nitrogen, is challenged. Conventional analyses of nutrient supply and demand, based on calculations of apparent inflow rates (uptake rates per unit total root length) are invalid. Apparent inflow rates are inversely proportional to root length. The convention of using total root length grossly overestimates the fraction of the root system active in nutrient uptake. Consequently, inflow rates based on total root lengths underestimate the true values, indicating unrealistically low nutrient concentration differentials between bulk soil and root surfaces required to drive uptake. An alternative method of analysis is suggested. This is based on total nutrient uptake rather than on inflow rate. Measurements of the former do not depend on estimates of active root length and can be made directly and reliably. The method was applied to data obtained from a pot experiment using spring wheat (Triticum aestivum L., cv. Wembley) grown in soil without nitrogen fertilizer (N0) or with nitrogen fertilizer equivalent to 200kg N ha?1 (N+). Soil nitrate concentrations calculated using the conventional method based on total root length, suggested that any increases in concentration above those measured in the N0 treatment should not have resulted in increased uptake and growth. However, the N+ plants were always bigger than those in the No treatment, refuting this suggestion. Theoretical uptakes of nitrogen (calculated initially on the basis of a fully active root system) were adjusted, by reducing the effective root length incrementally, until the theoretical uptake matched the measured net uptake of nitrogen. The mean fractions of the root systems likely to have been involved in nitrate uptake were 11% and 3.5% of the total lengths of root in the N0 and N+ treatments, respectively.  相似文献   
30.
Abstract. Epidermal (non-stomatally-controlled) conductance from the fourth leaf, first node leaf, flag leaf and ear of durum wheat (Triticum turgidum var durum L.) grown under Mediterranean field conditions has been measured, along with leaf stomatal frequency and the amount and distribution of epicuticular waxes. Measurements were carried out on varieties and land-races from the Middle East, North Africa, ‘Institut National de la Recherche Agricole’ (INRA) and ‘Centra Internacional de Mejora de Maiz y Trigo’ (CIMMYT). Significant differences were observed among genotypes in the epidermal conductances (ge) of the four organs. For each of the four organs tested, genotypes from the Middle East and CIMMYT showed higher ge. values than those from North Africa and INRA. Ears showed epidermal conductances that were more than four times higher than those of leaves when ge. values were expressed per unit dry weight. The amount of epicuticular waxes was higher in the fourth leaves, intermediate in the first node and flag leaves and lower in the ears. For each organ, ge differences among genotypes were unrelated with the amount of epicuticular waxes. Removal of epicuticular waxes by dipping the organs into chloroform significantly increased the epidermal conductance for the fourth and first node leaves and the ear. However, this did not occur for the flag leaf. For the fourth leaf, ge of intact leaves and ge of leaves in which epicuticular waxes were removed were unrelated (r = -0.265). The regression coefficient of this relation for the first node and flag leaves showed values of 0.666 and 0.650 (P > 0.05), respectively, and values were even higher in the ear (r > m 0.892, P > 0.01). Scanning electron microscope analysis showed that wax bloom decreased from the fourth leaf to the flag leaf, whereas the extent of amorphous wax increased. Wax bloom in leaves consisted mainly of deposits of thin wax plates. In the ears and the adaxial surface of flag leaves, fibrillar waxes predominated. In the first node and flag leaves, the wax deposits on the adaxial side cover the surface of the leaf more densely and uniformly than those on the abaxial side. There was no significant correlation between ge and total stomatal density, or between ge and either adaxial or abaxial stomatal density for any sample of the three different leaves. The contribution of epicuticular waxes plus total stomatal frequency only explained 42.4, 11.8, 28.3 and 16% of ge (per unit leaf area) variations for the fourth leaf, first node leaf, flag leaf and the combined variation of the three leaves together, respectively. From these results, it is concluded that complex interrelationship between different morphophysiological characteristics probably control ge differences among genotypes and that these interrelationships differ for each different plant part.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号