首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   63篇
  国内免费   12篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   12篇
  2020年   15篇
  2019年   17篇
  2018年   21篇
  2017年   20篇
  2016年   21篇
  2015年   18篇
  2014年   26篇
  2013年   23篇
  2012年   16篇
  2011年   21篇
  2010年   20篇
  2009年   15篇
  2008年   27篇
  2007年   23篇
  2006年   14篇
  2005年   15篇
  2004年   22篇
  2003年   13篇
  2002年   9篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   10篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1983年   11篇
  1982年   8篇
  1981年   9篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有514条查询结果,搜索用时 46 毫秒
61.
The goal of this study is to validate fluorescence intensity and lifetime imaging of metabolic co‐enzymes NAD(P)H and FAD (optical metabolic imaging, or OMI) as a method to quantify cell‐cycle status of tumor cells. Heterogeneity in tumor cell‐cycle status (e. g. proliferation, quiescence, apoptosis) increases drug resistance and tumor recurrence. Cell‐cycle status is closely linked to cellular metabolism. Thus, this study applies cell‐level metabolic imaging to distinguish proliferating, quiescent, and apoptotic populations. Two‐photon microscopy and time‐correlated single photon counting are used to measure optical redox ratio (NAD(P)H fluorescence intensity divided by FAD intensity), NAD(P)H and FAD fluorescence lifetime parameters. Redox ratio, NAD(P)H and FAD lifetime parameters alone exhibit significant differences (p<0.05) between population means. To improve separation between populations, linear combination models derived from partial least squares ‐ discriminant analysis (PLS‐DA) are used to exploit all measurements together. Leave‐one‐out cross validation of the model yielded high classification accuracies (92.4 and 90.1 % for two and three populations, respectively). OMI and PLS‐DA also identifies each sub‐population within heterogeneous samples. These results establish single‐cell analysis with OMI and PLS‐DA as a label‐free method to distinguish cell‐cycle status within intact samples. This approach could be used to incorporate cell‐level tumor heterogeneity in cancer drug development.

  相似文献   

62.
63.
Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome‐wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life.  相似文献   
64.
Photosystem Ⅱ reaction center D1/D2/Cytochrome b559 complex loses its bound secondary electron acceptor QA and QB during isolation and purification. The artificial plastoquinone can reconstitute with the complex. The reconstitution of decyl-plastoquinone (DPQ) with D1/D2/Cytochrome b559 complex results in a decrease of the fraction of the two long lived fluorescence decay components (24 ns and 73 ns) coupled with photochemical activities to the total fluorescence yields, as well as a decrease of the total fluorescence intensity and a blue-shift of maximum emission wavelength. These results suggest that as the electron acceptor of reduced Pheo, DPQ restricts the charge recombination of P680+ Pheo-, and the two long lived fluorescence decay components (24 ns and 73 ns) come from the recombination. Although DPQ reconstitution has little effect on the susceptibility of Chi a to photodamage, β-carotene can easily be photodamaged after DPQ reconstitution. This is probably related to the physiological function of β-carotene.  相似文献   
65.
A duty ratio drive prediction (DRDP) model of luminance degradation for organic light emitting diodes (OLED) microdisplay is proposed in this paper. The traditional stretched exponential decay (SED) model is not applicable for OLED driven by duty ratio. The DRDP model introduces the duty ratio as the variables affecting the lifetime of OLED. By fitting the undetermined coefficients with the measured luminance data, the quantitative relationships among the initial luminance, duty ratio, and OLED lifetime are obtained. Meanwhile, the model quantifies the phenomenon of spontaneous luminance recovery, which occurs when OLED switches from bright to dark. Finally, the DRDP model is used to compensate the luminance degradation of OLED driven by duty ratio. The experimental results show that the average prediction accuracy of DRDP model for white, red, green, and blue (W/R/G/B) OLED degradation trend is 0.9623. The average prediction accuracy of W/R/G/B OLED lifetime is 0.6119, which is greater than that of SED model. The lifetime is extended by 89.83% after compensation.  相似文献   
66.
Understanding and controlling the relaxation process of optically excited charge carriers in solids with strong correlations is of great interest in the quest for new strategies to exploit solar energy. Usually, optically excited electrons in a solid thermalize rapidly on a femtosecond to picosecond timescale due to interactions with other electrons and phonons. New mechanisms to slow down thermalization will thus be of great significance for efficient light energy conversion, e.g., in photovoltaic devices. Ultrafast optical pump–probe experiments in the manganite Pr0.65Ca0.35MnO3, a photovoltaic, thermoelectric, and electrocatalytic material with strong polaronic correlations, reveal an ultraslow recombination dynamics on a nanosecond‐time scale. The nature of long living excitations is further elucidated by photovoltaic measurements, showing the presence of photodiffusion of excited electron–hole polaron pairs. Theoretical considerations suggest that the excited charge carriers are trapped in a hot polaron state. Escape from this state is possible via a slow dipole‐forbidden recombination process or via rare thermal fluctuations toward a conical intersection followed by a radiation‐less decay. The strong correlation between the excited polaron and the octahedral dynamics of its environment appears to be substantial for stabilizing the hot polaron.  相似文献   
67.
Cow longevity and lifetime performance traits are good indicators of breeding effectiveness and animal welfare. They are also interrelated with the economics of dairy herd. Unfortunately, a high milk yield is often associated with deteriorated cow health and fertility and, consequently, with an increased culling rate. This situation, observed also in the Polish population of Holstein-Friesian cattle, inspired us to undertake a study on the associations between some factors and lifetime performance characteristics. The data set consisted of the records on 135 496 cows, including 131 526 of the Black and White strain (BW), and 3970 of the Red and White strain (RW) covered by performance recording and culled in 2012. It was found that cows of the BW strain and those from the largest herds (>100 cows) reached higher lifetime and mean daily energy-corrected milk (ECM) yields than cows of the RW strain and those from smaller herds culled at a similar age. Cows youngest at first calving (<2.0 years) were characterised by the highest lifetime ECM yield. It indicates that heifers can be bred even when they are younger than 15 to 16 months with no significant negative effect on their later performance. Infertility and reproduction problems (39.6%) and udder diseases (15.5%) constituted the most frequent reasons for cow culling. Cow longevity and lifetime productivity were considerably affected by the interactions between the studied factors.  相似文献   
68.
Meningioma is the most frequent primary central nervous system tumor. The risk of recurrence and the prognosis are correlated with the extent of the resection that ideally encompasses the infiltrated dura mater and, if required, the infiltrated bone. No device can deliver real‐time intraoperative histopathological information on the tumor environment to help the neurosurgeon to achieve a gross total removal. This study assessed the abilities of nonlinear microscopy to provide relevant and real‐time data to help resection of meningiomas. Nine human meningioma samples (four World Health Organization Grade I, five Grade II) were analyzed using different optical modalities: spectral analysis and imaging, lifetime measurements, fluorescence lifetime imaging microscopy, fluorescence emitted under one‐ and two‐photon excitation and the second‐harmonic generation signal imaging using a multimodal setup. Nonlinear microscopy produced images close to histopathology as a gold standard. The second‐harmonic generation signal delineated the collagen background and two‐photon fluorescence underlined cell cytoplasm. The matching between fluorescence images and Hematoxylin and Eosin staining was possible in all cases. Grade I meningioma emitted less autofluorescence than Grade II meningioma and Grade II meningioma exhibited a distinct lifetime value. Autofluorescence was correlated with the proliferation rates and seemed to explain the observed differences between Grade I and II meningiomas. This preliminary multimodal study focused on human meningioma samples confirms the potential of tissue autofluorescence analysis and nonlinear microscopy in helping intraoperatively neurosurgeons to reach the actual boundaries of the tumor infiltration.

Correspondence between H&E staining (top pictures) and the two‐photon fluorescence imaging (bottom pictures)  相似文献   

69.
W. Onno Feikema  Irina B. Klenina 《BBA》2005,1709(2):105-112
The triplet states of photosystem II core particles from spinach were studied using time-resolved cw EPR technique at different reduction states of the iron-quinone complex of the reaction center primary electron acceptor. With doubly reduced primary acceptor, the well-known photosystem II triplet state characterised by zero-field splitting parameters |D| = 0.0286 cm−1, |E| = 0.0044 cm−1 was detected. When the primary acceptor was singly reduced either chemically or photochemically, a triplet state of a different spectral shape was observed, bearing the same D and E values and characteristic spin polarization pattern arising from RC radical pair recombination. The latter triplet state was strongly temperature dependent disappearing at T = 100 K, and had a much faster decay than the former one. Based on its properties, this triplet state was also ascribed to the photosystem II reaction center. A sequence of electron-transfer events in the reaction centers is proposed that explains the dependence of the triplet state properties on the reduction state of the iron-quinone primary acceptor complex.  相似文献   
70.
To understand normal function of memory studying models of pathological memory decline is essential. The most common form of dementia leading to memory decline is Alzheimer’s disease (AD), which is characterized by the presence of neurofibrillary tangles and amyloid plaques in the affected brain regions. Altered production of amyloid β (Aβ) through sequential cleavage of amyloid precursor protein (APP) by β- and γ-secretases seems to be a central event in the molecular pathogenesis of the disease. Thus, the study of the complex interplay of proteins that are involved in or modify Aβ production is very important to gain insight into the pathogenesis of AD. Here, we describe the use of Fluorescence lifetime imaging microscopy (FLIM), a Fluorescence resonance energy transfer (FRET)-based method, to visualize protein–protein-interaction in intact cells, which has proven to be a valuable method in AD research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号