首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19134篇
  免费   1450篇
  国内免费   1715篇
  2024年   53篇
  2023年   275篇
  2022年   479篇
  2021年   668篇
  2020年   552篇
  2019年   849篇
  2018年   795篇
  2017年   475篇
  2016年   534篇
  2015年   702篇
  2014年   1287篇
  2013年   1387篇
  2012年   918篇
  2011年   1262篇
  2010年   929篇
  2009年   988篇
  2008年   988篇
  2007年   1115篇
  2006年   965篇
  2005年   853篇
  2004年   714篇
  2003年   593篇
  2002年   577篇
  2001年   371篇
  2000年   357篇
  1999年   323篇
  1998年   369篇
  1997年   270篇
  1996年   275篇
  1995年   285篇
  1994年   219篇
  1993年   198篇
  1992年   190篇
  1991年   170篇
  1990年   141篇
  1989年   116篇
  1988年   112篇
  1987年   95篇
  1986年   63篇
  1985年   107篇
  1984年   155篇
  1983年   120篇
  1982年   135篇
  1981年   59篇
  1980年   52篇
  1979年   51篇
  1978年   40篇
  1977年   19篇
  1976年   13篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 569 毫秒
931.
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts.  相似文献   
932.
There is increasing evidence that epithelial-vascular interactions are essential for tissue patterning. Here we identified components of the molecular cross talk between respiratory epithelial cells and pulmonary capillaries necessary for the formation of the gas exchange surface of the lung. Selective inactivation of the Vegf-A gene in respiratory epithelium results in an almost complete absence of pulmonary capillaries, demonstrating the dependence of pulmonary capillary development on epithelium-derived Vegf-A. Deficient capillary formation in Vegf-A deficient lungs is associated with a defect in primary septae formation, a morphogenetic process critical for distal lung morphogenesis, coupled with suppression of epithelial cell proliferation and decreased hepatocyte growth factor (Hgf) expression. Lung endothelial cells express Hgf, and selective deletion of the Hgf receptor gene in respiratory epithelium phenocopies the malformation of septae, confirming the requirement for epithelial Hgf signaling in normal septae formation and suggesting that Hgf serves as an endothelium-derived factor that signals to the epithelium. Our findings support a mechanism for primary septae formation dependent on reciprocal interactions between respiratory epithelium and the underlying vasculature, establishing the dependence of pulmonary capillary development on epithelium-derived Vegf-A, and identify Hgf as a putative endothelium-derived factor that mediates the reciprocal signaling from the vasculature to the respiratory epithelium.  相似文献   
933.
Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.  相似文献   
934.
Plakins in development and disease   总被引:3,自引:0,他引:3  
Plakins are large multi-domain molecules that have various functions to link cytoskeletal elements together and to connect them to junctional complexes. Plakins were first identified in epithelial cells where they were found to connect the intermediate filaments to desmosomes and hemidesmosomes [Ruhrberg, C., and Watt, F.M. (1997). The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7, 392-397.]. They were subsequently found to be important for the integrity of muscle cells. Most recently, they have been found in the nervous system, where their functions appear to be more complex, including cross-linking of microtubules (MTs) and actin filaments [Leung, C.L., Zheng, M., Prater, S.M., and Liem, R.K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J Cell Biol 154, 691-697., Leung, C.L., Sun, D., Zheng, M., Knowles, D.R., and Liem, R.K. (1999). Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons. J Cell Biol 147, 1275-1286.]. These plakins have also indicated their relationship to the spectrin superfamily of proteins and the plakins appear to be evolutionarily related to the spectrins, but have diverged to perform different specialized functions. In invertebrates, a single plakin is present in both Drosophila melanogaster and Caenorhabditis elegans, which resemble the more complex plakins found in mammals [Roper, K., Gregory, S.L., and Brown, N.H. (2002). The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J Cell Sci 115, 4215-4225.]. In contrast, there are seven plakins found in mammals and most of them have alternatively spliced forms leading to a very complex group of proteins with potential tissue specific functions [Jefferson, J.J., Leung, C.L., and Liem, R.K. (2004). Plakins: goliaths that link cell junctions and the cytoskeleton. Nat Rev Mol Cell Biol 5, 542-553.]. In this review, we will first describe the plakins, desmoplakin, plectin, envoplakin and periplakin and then describe two other mammalian plakins, Bullous pemphigoid antigen 1 (BPAG1) and microtubule actin cross-linking factor 1 (MACF1), that are expressed in multiple isoforms in different tissues. We will also describe the relationship of these two proteins to the invertebrate plakins, shortstop (shot) in Drosophila and VAB-10 in C. elegans. Finally, we will describe an unusual mammalian plakin, called epiplakin.  相似文献   
935.
936.
1,25-dihydroxyvitamin D(3) (VD(3)) induces differentiation in a number of leukemia cell lines and under various conditions is able to either stimulate or inhibit nuclear factor kappa B (NF-kappaB) activity. Here we report a time-dependent biphasic regulation of NF-kappaB in VD(3)-treated HL-60 leukemia cells. After VD(3) treatment there was an early approximately 4 h suppression and a late 8-72 h prolonged reactivation of NF-kappaB. The reactivation of NF-kappaB was concomitant with increased IKK activities, IKK-mediated IkappaBalpha phosphorylation, p65 phosphorylation at residues S276 and S536, p65 nuclear translocation and p65 recruitment to the NF-kappaB/vitamin D responsive element promoters. In parallel with NF-kappaB stimulation, there was an up-regulation of NF-kappaB controlled inflammatory and anti-apoptotic genes such as TNFalpha, IL-1beta and Bcl-xL. VD(3)-triggered reactivation of NF-kappaB was associated with PI3K/Akt phosphorylation. PI3K/Akt antagonists suppressed VD(3)-stimulated IkappaBalpha phosphorylation as well as NF-kappaB-controlled gene expression. The early approximately 4 h VD(3)-mediated NF-kappaB suppression coincided with a prolonged increase of IkappaBalpha protein which require de novo protein synthesis, lasted for as least 72 h and was insensitive to MAPK, IKK or PI3K/Akt inhibitors. Our data suggest a novel biphasic regulation of NF-kappaB in VD(3)-treated leukemia cells and our results may have provided the first molecular explanation for the contradictory observations reported on VD(3)-mediated immune-regulation.  相似文献   
937.
938.
Proteins that associate with lamins: many faces, many functions   总被引:1,自引:0,他引:1  
  相似文献   
939.
The main goal of the present study was to characterise the course of infection and immunological responses developed by Leishmania infantum infected BALB/c mice. Parasite load was determined by Real-time TaqMan PCR while cytokine and Immunoglobulin G (IgG) production were assessed by ELISA. Leishmania DNA was detected in spleen and liver as soon as day 1 post-inoculation (pi) and the parasitism was sustained until the end of the experiment. The cytokine kinetics in spleen and liver was generally associated with the oscillations of parasite load. Overall, it was not observed a distinct Th1 or Th2 pattern of cytokine production during the time of experiment. The infected mice developed a mixed immune response, with concomitant production of IFN-gamma, IL-4 and IL-10, both in spleen and liver, and both IgG isotypes. However, our results suggest that, compared to liver, the spleen is more susceptible to L. infantum infection.  相似文献   
940.
FAN (factor associated with neutral sphingomyelinase [N-SMase] activation) exhibits striking structural homologies to Lyst (lysosomal trafficking regulator), a BEACH protein whose inactivation causes formation of giant lysosomes/Chediak-Higashi syndrome. Here, we show that cells lacking FAN show a statistically significant increase in lysosome size (although less pronounced as Lyst), pointing to previously unrecognized functions of FAN in regulation of the lysosomal compartment. Since FAN regulates activation of N-SMase in complex with receptor for activated C-kinase (RACK)1, a scaffolding protein that recruits and stabilizes activated protein kinase C (PKC) isotypes at cellular membranes, and since an abnormal (calpain-mediated) downregulation/membrane recruitment of PKC has been linked to the defects observed in Lyst-deficient cells, we assessed whether PKC is also of relevance in FAN signaling. Our results demonstrate that activation of PKC is not required for regulation of N-SMase by FAN/RACK1. Conversely, activation of PKC and recruitment/stabilization by RACK1 occurs uniformly in the presence or absence of FAN (and equally, Lyst). Furthermore, regulation of lysosome size by FAN is not coupled to an abnormal downregulation/membrane recruitment of PKC by calpain. Identical results were obtained for Lyst, questioning the previously reported relevance of PKC for formation of giant lysosomes and in Chediak-Higashi syndrome. In summary, FAN mediates activation of N-SMase as well as regulation of lysosome size by signaling pathways that operate independent from activation/membrane recruitment of PKC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号